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RÉSUMÉ 

Le rythme accéléré des changements climatiques influence à différents degrés tous les 
domaines de la biosphère. En effet, le réchauffement global confronte de nombreuses 
espèces animales et végétales à s'adapter localement aux changements ou à migrer 
vers de plus favorables conditions afm de diminuer les effets négatifs causés par ces 
nouvelles conditions abiotiques. Il devient cependant de plus en plus évident que 
certaines espèces n'ont pas la capacité de s'adapter ou de migrer rapidement, et donc 
ces espèces pourraient faire face à une diminution significative de leur succès 
reproductif à la grandeur de leur aire de distribution. Les arbres sont des organismes 
particulièrement vulnérables aux changements climatiques rapides de par leur 
caractère sessile qui demande généralement une longue période de régénération 
combinée avec une dispersion très précise de leurs propagules, ce qui pourrait 
fortement diminuer leur succès reproductif et leur adaptabilité. Ces limitations 
pourraient donc imposer un retard de migration significatif aux espèces arborescentes. 
L'objectifprincipal de la thèse de doctorat ci-présente sera donc d'identifier les 
principaux facteurs qui contrôlent les aires de distribution ainsi que les dynamiques 
spatiales des espèces arborescentes afm d 'améliorer notre capacité de prédire les 
futures aires de distribution de ces espèces. Afm d 'atteindre cet objectif, ma thèse 
s'est principalement intéressée à l'érable à sucre (Acer saccharum), une espèce 
arborescente tempérée de grande importance qui devrait migrer selon les projections 
de changement global. Cette espèce a cependant démontré une sensibilité aux 
changements climatiques, principalement lors des premières étapes de croissance. 

En premier lieu, j 'ai travaillé à la caractérisation des impacts potentiels de 
l'adaptation locale, de la température, ainsi que des changements de température sur 
les semences d'érable à sucre et leur capacité à germer. Dans cet environnement 
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contrôlé, j'ai identifié que l'ai re de distribution spécifique avait une grande capacité 
d'adaptation à la température. En effet, les semences de provenance nordique étaient 
capables de germer en conditions plus froides constantes et en traitement de 
température froide variable, alors que les semences en provenance du sud étaient 
mieux adaptées aux traitements de variation de température chaude. Somme tout, ce 
premier chapitre a permis d'identifier l'érable à sucre comme une espèce aux 
exigences très spécifiques en matière de température lors de la fin de la dormance et 
de la germination des graines, peu importe 1' origine des semences. Ces résultats nous 
ont permis par la suite de prédire la germination de l'espèce sous trois scénarios 
potentiels de changement climatique, ainsi que d ' identifier qu'une réduction 
significative de la germination de l'érable à sucre est fort probable. 

Au sein du deuxième chapitre, mon objectif était de caractériser l'influence relative 
de l'adaptation locale (de par l'utilisation de semences de différentes provenances) 
sur la capacité de l'érable à sucre à germer, à s'établir et à survivre à travers une 
grande variété de sites situés à l'intérieur de l'aire de distribution de l' espèce. Afin 
d 'atteindre cet objectif, j 'ai établi une expérience de transplantation de semences à 
grande échelle. Au cours de cette expérience, j 'ai planté des semences provenant 
d 'une multitude de sites (de prélèvement) représentant l'ensemble de l'aire de 
distribution de l'espèce à plusieurs sites (de transplantation) qui se trouvent à 
l'intérieur de, à la limite, et passé la limite de l'aire de distribution de l'érable à sucre. 
Mes résultats démontrent que les semences provenant du Nord possèdent la meilleure 
capacité pour l'espèce de germer et d 'établir un semi, puisque ces semences se 
retrouvent dans les conditions les plus semblables aux conditions originales. Malgré 
que la germination des semences était plus grande à l'intérieur de l'aire de 
distribution spécifique, nos résultats suggèrent qu'une semence qui germine et 
s'établit après la deuxième année a un taux de survie comparable peu importe sa 
location à l' intérieur ou à l'extérieur de l' aire de distribution . Ces résultats suggèrent 
donc que les variables liées au climat sont les principaux facteurs d 'influence 
contrôlant la germination des semences et l'établissement précoce des semis à 
l'intérieur de l'aire de distribution de l'espèce. L ' influence du rnicrosite/substrat a 
cependant un effet s ignificatif sur le recrutement à l'extérieur de l'aire de distribution. 
En résumé, ces résultats démontrent que l'expansion de 1 'aire de distribution de 
l'érable à sucre pourrait être limitée lors des premières étapes de croissance par 
l'adaptation locale aux microsites ainsi que par le climat à l' intérieur de l'aire de 
distribution. 

Pour le troisième chapitre, j'ai tenté d ' identifier les principaux facteurs 
démographiques influençant le recrutement des espèces arborescentes à l'intérieur de 
la zone ( écotone) de transition tempérée-boréale, une zone où la migration induite par 
le climat devrait se produire en premier. L 'objectif de ce chapitre était donc de tester 
si des effets de priorité imposés par les espèces arborescentes boréales résidentes 
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ralentissent le recrutement des espèces tempérées. Afin d 'atteindre cet objectif, j'ai 
employé des techniques de modélisation inverse et de données spatialement explicites 
pour investiguer l'influence relative de la dispersion des semis, de la fécondité , de la 
compatibilité de substrat, et fmalement de l' identité biotique du voisinage local sur le 
recrutement de semis. Nos résultats démontrent que les canopées boréales influencent 
effectivement la distribution de certains substrats. Ainsi , les substrats boréaux, 
caractérisés par un couvert d 'aiguilles et de bois en décomposition, sont hautement 
défavorables aux grandes densités de semis d 'espèces tempérées et diminuent leur 
recrutement. De plus, la dispersion des semis était hautement localisée, étant 
généralement situés à proximité des arbres parents. Ces résultats soulignent que le 
recrutement des espèces arborescentes tempérées à 1' intérieur de 1 'écotone est 
restreint par des effets de priorité importants imposés par les espèces arborescentes 
boréales. En conclusion, ces effets imposés par les arbres de la forêt boréale causeront 
d' importants retards dans l'expansion de l'aire de distribution des espèces tempérées. 

Au fmal , les résultats de la thèse de doctorat ci-présente apportent un savoir précieux 
contribuant à la compréhension des facteurs influençant le recrutement dans le 
contexte de dynamiques d'aire de distribution. En s'appuyant sur les résultats d ' une 
expérience en laboratoire, combinés avec une expérience de transplantation à grande 
échelle ainsi qu 'avec une évaluation du système naturel à l'intérieur de l'écotone 
tempéré-boréal, la thèse de doctorat ci-présente fournit une quantité notable 
d'informations clés qui pourront être utilisées pour améliorer notre capacité de 
prédire les effets des changements globaux au sein des écosystèmes forestiers. 

Mots-clés: changement climatique, réchauffement global, aire de distribution 
spécifique, érable à sucre, température, adaptation locale, effets de priorité, écotone, 
recrutement de semis, germination de semences, démographie. 





ABSTRACT 

Climate change is occurring at su ch a rapid rate that is altering ali rea !ms of the 
biosphere in sorne fashion or another. More specifically, it is encouraging many 
animal and plant species to either adapt locally to the changes occurring orto rnigrate 
to areas which maintain a more favourable climate. Although, it is becoming 
increasingly evident that certain species Jack the ability to adapt or rnigrate under 
rapid climate change, may face significant mismatches in their fitness . Trees are 
especially vulnerable to these rapid changes associated with climate change, as they 
are sessile organisms that generally require long regeneration periods, combined with 
highly localized propagule dispersal that could lead to significant declines in fitness, 
adaptability, and lags in species migration. It is thus the primary objective of this 
thesis to identify the driving factors which are currently controlling tree species 
ranges and their dynamics as a means ofbetter estimating future tree species 
distributions. To do so, I focused much of my attention on sugar maple (A cer 
saccharum); a dominant temperate tree species that has been projected to migrate in 
the future under climate change, however, has also been shawn to be sensitive to 
changes in climate, particularly at the earliest !ife stages. 

First, I focused on assessing the potential impact of local adaptation, temperature, and 
temperature shifting on sugar maple seed and its ability to gerrninate. In this 
controlled environment, I was able to identify a strong species range adaptation to 
temperature, where northem seed provenances germinated much better under colder 
constant incubation temperatures and cold shifting treatments, while southem seed 
provenances were better adapted to warm shifting treatments. Collectively, I was able 
to fmd that sugar maple has a very narrow species specifie temperature requirement 
to break seed dormancy and ensure seed germination, regardless ofseed origin. Using 
these results, T then forecasted the influence ofthree future climate warming scenarios 
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on seed germination, and found that sugar maple will face a signiftcant collapse in 
seed germination rates under the projected changes with climate. 

In the second cbapter, 1 was interested in finding out the relative influence local 
adaptation (through the use ofvarious seed provenances) may play on the ability of 
sugar maple to germinate, establish, and survive within a range of sites pertaining to 
its species range limit. To do so, 1 established a large scale seed transplant 
experiment, where seed from multiple provenances representing the entire sugar 
maple species range were transplanted to sites within, at, and beyond the current 
species range limit. T found that seed from the northern seed provenances currently 
provides the best opportunity for a species to gerrninate and establish seedlings. 
Surprisingly, 1 found that although seed germination and seedling establishment was 
much higher at sites within the species range following the frrst year, seedling 
survival was comparable within, at, or beyond the current range limit after the second 
year. Further, T found that climatic related variables were primarily responsible for 
controlling seed germination and early establishment within the range, however, the 
influence of microsite/substrate drove recruitment beyond its current range. Together, 
1 found strong evidence suggesting tbat sugar maple's range expansion would be 
constrained due to the species being locally adapted at its early stages of recruitment 
to climate and microsites occurring within its current range. 

ln the third chapter, 1 wanted to identify the primary demographie factors driving tree 
species recruitment within the temperate-boreal transition zone (ecotone) , where 
climate induced temperate species migration is expected to occur frrst. My objective 
of this study was to test whether priority effects imposed by resident boreal trees were 
slowing the recruitment oftemperate trees. To do so, T investigated the relative 
influence of seedling dispersion, fecundity, substrate favourability, and the influence 
of local biotic neighborhood on seedling recruitment. I found that boreal cano pies 
were indeed influencing the distribution of certain substrates. As a result, the boreal 
influenced substrates; needle cover and decayed wood were found to be highly 
unfavourable for seedling densities of temperate tree species, and were ultimately 
inhibiting their recruitment. ln addition, seedling dispersion was found to be highly 
localized, where seedlings were generally dispersed within close proximities to their 
parent trees. Together, these main findings highlight that temperate tree species 
recruitment within the ecotone are being constrained by magnified priority effects 
imposed by boreal tree species. Ultimately, these effects imposed by boreal trees will 
lead to significant lags in temperate tree species range expansion. 

The results presented in this doctoral research thesis improve our understanding of 
the driving factors controlling recruitment within the context of range dynamics. By 
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using results collected from the laboratory, a manipulated seed transplant experiment, 
and an assessment of the natural system occurring within the temperate-boreal 
ecotone, 1 provide invaluable information that can be used to further assist in 
predicting the effects of future climate change within the forested ecosystems. 

Kevwords: climate change, global warming, species range, sugar maple, 
temperature, local adaptation, priority effects, ecotone, seedling recruitment, seed 
germination, demography. 





INTRODUCTION 

The increasing concentrations of greenhouse gases (GHG) (i.e. COz, CH4, and 

HzOvapour) being emitted into the atmosphere; where COz alone has increased 

approximately 70% (ppm concentrations between 1970 and 2004) are the primary 

cause of climate change (Schaub 2009) . As a result ofthese increases in GHG, it is 

forecasted that by the end of this century the mean global temperature is expected to 

rise between 2-4 oc (IPCC 2014 ). Although there exists considerable variability in 

these projections, they remain conservative. For example, temperature projections 

that have been corrected to incorporate simply the post-industrial COz ppm 

concentrations have mean global temperature rising by as muchas 3.5°C to 6.2°C by 

the end of this century (Peters et al. , 20 13). Wh ile temperature projections for the 

next century have the most leveled headed scientists nearly pressing the panic button, 

a greater emphasis is no longer being made on whether climate change is actuaUy 

occurring, but rather on the rate and magnitude of such changes. 

Unfortunately, climate change and its fallout is not occurring uniformly across the 

globe, as variability in space and time become important aspects to interpret potential 

effects and impacts. For example, the warming that is occurring in the far north 

(2':60°N) bas already been considerable; as muchas+ 1.36°C century·' ( 1875-2008), 

with an accelerated warming rate in the most recent decade ( + l. 3 5°C decade_,) 
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(Bekryaev et al, 2010). Here in the mid-latitudes (40-60°N) ofnortheastern North 

America projections have been estimated to be along the !ines of the global average 

(2-4°C), however, the most pessimistic wamings have mean temperatures reaching as 

high as 7°C by the end ofthe current century (Feng et al. , 2014) . Mean temperature 

increases don't on1y make things warmer, they also cause significant cascading 

effect(s) down on many other processes and cycles . For example, the hydrologica1 

cycle has already been altered by increased warrning over the past few decades, 

resulting in shifts in the tropical belt (Lu et al. , 2009) . These changes can then 

influence the formation ofHadley cells, and ultimately impact trade winds and 

precipitation globally (Seidel et al., 2008). Indirectly, these changes will also increase 

the uncertainty surrounding inter-annual variability of precipitation globally and 

locally, and is a Iso expected to increase the frequency and magnitude of extreme 

weather events (i .e., drought, flooding) (Coumou and Rahmstorf2012). 

Climate change is also having a significant effect on the biosphere, where 

considerable changes have already been documented in forested ecosystems across 

the globe. For example, the growing season in Canada' s boreal forest has already 

extended a number ofweeks si nee the 1960s (Priee et al., 20 13), which directly 

influences the plant photosynthetic activity and growth (Bertini et al., 2011 ). A 

number of other changes are also occurring; 1atitudinal shifts of the tree tine (Harsch 

et al., 2009), site productivity (Albert and Schmidt 201 0), and changes in species 

composition(s), ali have a profound impact on community assemb lages, processes, 

and interactions (Iverson and Prasad 201 0) . Although, not ali reports of these changes 

are unidirectional ; sorne studies are reporting net benefits in tree growth associated 

with a prolonged growing season with rising temperatures and C02 rates (Pretzsch et 

al., 20 14; Wu et al. , 2014 ), white others are reporting significant increases in tree 

mortality (See Global Review by Allen et al., 20 1 0). Tt th us becomes critical to 

identify the most susceptible areas and species where such prominent changes in 



climate will undoubtedly impact the health ofthe forested ecosystem and its 

proponents. By successfully doing so , we will be able to not only better identify the 

direct/indirect impacts of climate change, but also be able to better project future 

conditions to allow for better mitigation. 

3 

Trees can be especially vulnerable to the expected rapid changes associated with 

climate change, where a combination oftheir Jack ofmobility, time to reach 

reproductive maturity, and typically limited propagule dispersal, result in very slow 

demographical changes (Petit and Hampe 2006; Lenoir and Svenning 20 13; Aitken et 

al. , 2016) . During the last significant warrning period (Holocene - Il ,500YBP), trees 

were able to attain "reasonable" migration rates (l 0-20 km annually) (King and 

Herstrom 1997), that may have reached as high as 70 km annually (Davis 1981 ; 

Tirpak 1990). However, unlike trees during the Holocene; which went relatively 

undisturbed over long periods and migrated through prirnary succession (i.e., glacial 

retreat) , trees today are forced to migrate to areas where trees are already established 

(ex. temperate trees attempting to rnigrate into the boreal forest) and are exposed to 

priority effects ; early colonizing species monopolize resources (i.e. space, light, 

nutrients) and make it difficult for invading species to compete, and ultimately 

colonize (Urban and De Meester 2009). Also, unlike the slower more progressive 

warming which occurred during the Holocene, trees today are being subjected to a 

more pronounced and rapid warrning over a shorter time frame. Furthermore, to make 

matters even more unfavorable, trees are also being exposed to a variety of 

anthropogenic (i.e. habitat fragmentation- deforestation, urbanization, pollution) and 

natural disturbances (i.e. insect outbreaks and frre) , both projected to increase in 

magnitude and frequency under climate change (Volney and Hirsch 2005 ; Bergeron 

et al. , 2010; Priee et al., 2013). Ultirnately, present day tree migration rates should be 

expected to be considerably slower than tho se of the past. 
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Current estimates have most North American tree species being capable of migrating 

at rates of 100-lOOOm year- 1 (- 50 km centuri') (Overpeck et al. , 1991), however, 

this remains a far cry from the "required rate" (300-490 km century-1
) generally 

believed trees would be required to reach in arder to maintain one 's climate niche 

(Thomas 2004; McLachlan et al. , 2005 ; Ibanez et al.2009; Périe et al., 20 14). Under 

current warming, trees have already begun to show their ability to migrate along both 

elevational (Lenoir et al., 2008; Beckage et al., 2008; Kharuk et al., 201 0; Brown and 

Vellend 2014) and latitudinal gradients (Graignac et al., 2014; Foster and D 'Amata 

2015 ; Putnam and Reich 2016). However, it is becoming increasingly clear that not 

ali species will be able to maintain such rapid rates of migration, and thus mis matches 

in the ir reproductive fitness should be expected to occur (Renwick and Rocca 20 15 ; 

Aitken and Bemmels 2016) . A recent meta-analysis conducted by Zhu et al., (2012) 

highlighted that more than half of the 92 tree species located in the eastern United 

States would experience sorne form of species range contraction or lag due to climate 

change, where only a fifth of the tree species would be forecasted to keep pace with 

changes in climate. Ultimately, if species aren't able to keep up with the "required 

rate" to maintain pace with climate change, the focus needs to turn to what are the 

cause(s) of such lagor delay. 

A species range limit or periphery is likely to be the area of first observational 

change(s) for expansion or contraction due to climate change (Sexton et al. 2009; 

Svenning et al., 2014) . Species range limits are generally highly mobile, where they 

are typically expanding and contracting frequently through time (Kirkpatrick and 

Barton 1997; Sexton et al. , 2009). Beyond a species range limit, individuals are 

typically not present due to a combination ofunfavorable abiotic and biotic factors, 

which stress the species beyond sorne physiologicallimit associated with their 

reproductive fitness (Hu and He 2006; Blanquart et al., 20 13 ; Renwick et al. , 20 15). 

A number of inhibitors have been proposed as reasons for range limits and/or the 
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cause of the inability of a species to migrate; climate (Williams et al., 201 0; 

Fishchelli et al., 2015), dispersa1limitations (Hargreaves and Eckert 2014), edaphic 

effects (Lavergne et al., 2010; Brown and Vellend 2014), and biotic interactions 

(HilleRisLambers et al. , 2013; Moran and Ormond 2015; Ur1i et al., 2016) remain the 

most prominent. The increased stress caused individually and/or in combination of 

these factors creates high environmental variability at the species range limit or 

ecotone; where one biome transitions into another causing species overlap (Sexton et 

al., 2009; Boulange at et al., 20 12; Hargraves et al. , 2014 ). These zones conta in the 

1ast complete life cycle (seed dispersed by parent tree which then becomes an adult 

tree) of a population (Renwick et al. , 2015) and are likely to interact in novel ways 

frrst under climate change as they respond to novel species and environmenta1 

interactions (Williams and Jackson 2007; Svenning et al., 2014) . 

Currently, species distribution models (SDMs) are the standard approach for 

predicting the dynamics of range shifts in response to environmental changes 

(Parmeasan 2006; Chen et al. , 2011). Although considerable advances have been 

made using SDMs to predict changes under climate change (Thuiller et al., 2008; 

Chevin et al. , 2010; Boulangeat et al., 2012), concems still remain with their 

accuracy (Shaw and Etterson 2012). For instance, temperate tree species have been 

projected to be present by the end of this century at locations where there are 

currently no trees (i.e. tundra) (McKenney et al., 2007). These models have been 

criticized for being too simplistic, and typically ignore severa) other factors important 

to range dynamics; dispersal abilities and barriers, demography, habitat 

fragmentation, genetic variability, biotic interactions, and often natural disturbances 

(Sexton et al. 2009; Lavergne et al., 2010; Alberto et al., 2013). ln addition, SDMs 

lack the ability to consider how plants can evolve to environmental conditions (Reed 

et al., 2011 ; Moran and Ormond 20 15). Recent efforts however have made great 

strides to include phenotypic plasticity and evolutionary response to ecosystem 
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changes (Atkins and Travis 2010; Lu et al. , 2014), which when population 

differentiation is accounted for , species range shifts are even more constrained than 

when models consider spatial homogeneity (Valladares et al. , 2014). These fmdings 

suggest that in arder for species to maintain their climatic niche under climate change, 

they will either need to have a high genetic mutation rate or high local diversity at the 

range periphery to deal with novel changes expected to occur. 

Local adaptation (i.e. individuals of the same species that are better suited to the ir 

local environment than others ofthe same species) is measured through the 

connectivity between the adaptive variability genetically ( e.g., selection, drift, 

migration) and how the environmental conditions play upon it (Kawecki and Ebert 

2004). The ability to adapt to local conditions plays a fundamental role in the 

generation and maintenance ofbiodiversity (Blanquart et al., 20 13), and will greatly 

impact the expansion or contraction of a species ' geographical range as they interact 

with the local clirnate and other species (Kaltz and Shykoff 1998; Sexton et al. , 

2009) . Although the concept of local adaptation has been known for nearly a century 

(Turesson 1922), there still remains considerable gaps in our knowledge of how 

influential adaptation is and could be with regards to a climate induced species range 

shifts. Tree species that maintain or expand their current distribution under climate 

change should either be resilient in place or rnigrate to more favorable environments, 

where their success will hingeon the species' ability to express certain favorable 

genetic and non-genetic traits (adaptive evolution, gene flow, phenotypic plasticity). 

Successfully doing so , will either enhance its fitness or at a minimum buffer the 

potential mismatches that may cause significant setbacks under future changes 

(Nicotra et al., 2010; Gonzalez et al. , 2013 ; Anderson 2016) . The species ability to 

adapt is especially important if certain !ife events are temporal and/or climatically 

sensitive ( e.g. , leaf out period, flowering, seed dormancy) (Morin and Chuine 20 14). 
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Trees in the past have shown the ability to naturally adapt and evolve in response to 

the complex interaction(s) between abiotic and biotic factors and their processes 

occurring within their local environment (Sexton et al. 2009). Trees have been shown 

to have adapted to temperature and precipitation (Kim and Do no hue 20 13), as weil as 

their influence to herbivory, pollinators, and even edaphic characteristics (Johnson et 

al., 2010; Garrido et al., 2012; Brown and Vellend 2014). As trees can maintain a 

large geographical range, it can lead to higher levels ofwithin-population genetic 

variation, which in turn benefits a species to adapt and acclimate more rapidly to 

changes in the future (Hamrick 2004). Species whom maintain higher diversity and/or 

adaptability are at an advantage, where the expression of preferential alle les to deal 

with a novel suite of environmental variability under climate change could help buffer 

populations- frrst at the local scale and theo at the species leve[ (Savolainene and 

Oney 20 13). However, if a natural population lacks sufficient genetic variability or 

population size, especially at their range periphery - the potential for adapting could 

be severely constrained, at ]east until it adapts (Franks et al. , 2014). Measuring the 

ability of a species to adapt to climate change remains pertinent, especially since the 

individuals at the range limit are not always the most adaptive (Duputié et al., 20 15) 

and changes cao be species and boundary limit dependent (Blanquart et al. , 2013). 

Our understanding of species adaptation at their range periphery remains limited, 

especially as the number ofpotential inhibitors and their degree of contribution can 

be complex (Kim and Donohue 2013 ; Aitken and Whitlock 2013; Brown and Vellend 

20 14; Ur li et al., 20 16). 

Sugar maple makes an ideal candidate to investigate the contributing factors which 

determine the causes of its current range li mit and associated dynamics under climate 

change. Sugar maple is a tree species which is wide spread, long lived, and dominant 

within mu ch of its 12.5 million ha- 1 distribution within the forests of northeastem 

North America (Godman 1990). Since migrating northward from its southern refugia 
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during the last glacial event, sugar maple's distribution has remained considerably 

stable over the past 6,000 years (Miller and Parker 2009) . As a result of this stability, 

sugar maple has been able to adapt to a wide range ofabiotic and biotic conditions 

across a range offorest comrnunities; ranging from the temperate-boreal forest 

ecotone of its northem li mit to its southem range li mit with the mixed-wood forests of 

the southeastem plain (Godman 1990). Likely due to such variation in living 

conditions, sugar maple has been able to express considerable genetic diversity from 

its southem to northern range (Gunter et al., 2000), which includes a number of 

regional genetic ecotypes (Kriebel and Gabriel 1969). Sugar maple may currently 

possess the necessary adaptability to be evolutionary rescued (Gonzalez et al., 20 13) 

and overcome potential deleterious impacts of climate change, however it remains to 

be investigated. 

Like severa! other North Arnerican temperate tree species, sugar maple has been 

forecasted to migrate northward under climate change (Boisvert-Marsh et al., 20 14). 

However, sugar maple has evolved to possess a specifie sensitivity to climate 

associated with key fitness processes that could leave it prone to mismatches under 

climate change. For example, sugar maples' ability to develop flowers in early spring 

has been adapted to more stable past climate conditions, where increased variability 

in earlier spring conditions in the future may negatively impact flower development 

(Chuine and Beau bien 2001 ; Morin and Chuine 20 14). Next, if flower development 

does ensue, the development of viable seed must occur, and then subsequent 

germination. Sugar maple possess a morphologically mature, but dormant embryo 

that requires an extended period (30-90 days) of coo l and moist (stratification) 

conditions (Janerette 1979; McCarragher et al., 20 Il). Matching the duration and 

temperature specifie requirements for seed germination could be in peril under future 

climate change. Sugar maple could be touted as the "Goldilocks" oftree species, 

where like Goldilocks; who held a similar preference to the temperature ofher 
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porridge, sugar maple seeds are particular to the temperature oftheir environment, 

and unfavourable changes (temperature and duration) could lead to a collapse in 

successful seed germination and impact natural recruitment success of the species. 

Concerns surrounding sugar maple's fitness thus should be raised, especially at the 

northem range periphery, where adult trees currently grow much slower (Reich et al., 

2015), and their offspring (ifproduced) should be subjected to much higher 

environment variability (Walters and Reich 1996; Clark et al., 2003; Kellman 2004; 

Brown and Vellend 2014). Although sugar maple's abundance has increased since 

post-settlement ( circa.l850) (Houle et al., 20 12), recent declines associated with 

changes in environmental conditions (Duchesne et al., 2005; St.Clair et al. , 2008) 

highlight a potentially higher sensitivity to changes than previously believed, and 

could impact reproductive fitness even more in a rapidly changing future (Goldblum 

et al., 2010; McCarragher et al., 2011). 

As many plant species willlack the ability to disperse and colonize areas to maintain 

rates comparable to those currently projected under climate change (Loarie et al., 

2009), it becomes imperative that research be undertaken to identify the potential 

severity of important bottlenecks (i.e. points of resistance where significant 

reductions in fitness or abundance occur) associated with species distribution range 

!ag (Parmesan 2006; Sexton et al., 2009; Svenning et al., 2014) . Bottlenecks can be 

caused by a number of pro cesses, where a species could be maladapted to its 

environment, which then leads to declines in species fitness or ability to regenerate 

(Kawecki and Ebert, 2004; Kingsolver et al., 2013; Franks et al. , 20 14; Savage and 

Vellend 2015). Currently our understanding ofthe key processes controlling species 

ranges and the ir dynamics although irnproving (Svenning et al. , 20 14; Ur li et al. , 

20 16) remains limited. 
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To date, our best means ofassessing a species ' ability to migrate empirically in the 

future remains reciprocal transplant studies; attempt to identify the fitness response of 

a single or multiple population(s) of a species by gathering information asto how it 

responds to the local environment. Wh ile these types of studies have a long history of 

use (Hall 1932), many still knowingly ignore key !ife stages (i .e. seed germination 

and initial seedling establishment) through the use of greenhouse grown seedlings 

(but see Brown and Vellend 2014) . By transplanting seedlings rather than seed, 

studies ignore significant bottlenecks in recruitment, which can falsely inflate 

interpretations of the likelihood of a tree species ability to migrate. Furthermore, 

greenhouse grown seedlings are typically grown in "favourable conditions" (inside or 

outside), which generally ensures that healthy seedlings are being transplanted. 

Ultimately, the lack of empirical studies transplanting seeds leaves a significant gap 

in our knowledge to be able to accurately estimate possible rate(s) of colonization a 

species can attain. By doing so , we will be able to further our understanding by 

including more factors and processes that influence the demographies of range limits 

(Sexton et al. , 2009; Walck et al., 20 ll ; Svenning et al., 2014 ). 

To date, most research conducted with an interest in assessing the ability of a species 

to migrate has generally been do ne within an altitudinal context exclusively (ex. 

Lenoir et al. , 2008; Beckage et al., 2008; Brown and Vellend 2014 ). Although this 

approach allows for more rapid field assessments (Jess travet time between field 

sites), it limits the inter-site variability gained through assessing multiple ecotone 

sites (Graignic et al., 20 14; Putnam and Reich 20 16). To help mitigate the demand for 

latitudinal studies, a heavy dependence on SDMs has been used (Parmeasan 2006 ; 

Chen et al. , 20 ll ). However, as mentioned earlier, these mo dels ignore many 

important variables and processes known to influence species migration and are often 

limited by the data used (Lavergne et al., 201 0; Alberto et al. , 20 13; Thuiller et al. , 

20 13). Further, it is often that studies are restricted into making accurate projections 
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into species migration or lag as they often only have data representing a portion of a 

species latitudinal distribution (Woodall et al. , 201 0; Zhu et al. , 20 12). In the context 

of northward tree species migration under climate change, it will become increasingly 

important for the collection of more empirical data, particularly at the earliest !ife 

stages in order to accurately assess the present and plausible future changes occurring 

in the forested ecosystem. This becomes especially important to include sites and 

populations across the entire species range and compare results with sites at their 

range margins, where these populations still remain under sampled (Brown and 

Vellend 2014; Graignic et al. , 2014; Foster et al., 2016). 

As it becomes more pertinent to accurately predict the impacts of climate change on 

the forested ecosystem, my central objective for this thesis was to identify the key 

contributing and/or inhibiting factors that influence the demographies oftrees in the 

context of species range shifts under climate change. In the frrst chapter of the thesis, 

I begin by taking an in depth approach at investigating the effect of local adaptation, 

temperature, and temperature shifting - a proxy for early or late spring conditions on 

seed germination of sugar maple (Acer saccharum). I performed this assessment in a 

controlled laboratory setting as a means ofisolating the effect oftemperature and its 

influence on seed germination. I hypothesized that seed origin affects the range of 

temperature for optimal germination due to local adaptation. The primary objective(s) 

ofwithin this study was to frrst identify the optimal incubation temperature across the 

species range, and for each seed provenance used within the study, while also 

identifying if an upper temperature threshold existed that inhibited germination. 

Second, I identify the influence ofwarmer and cooler temperature shifts on seed 

germination as a means of simulating an earlier or late spring. Final! y, 1 identify the 

potential changes in future seed germination across the range of sugar maple under a 

series of future climate warming scenarios (+2°C, +5°C, and +7°C); which are in line 

with the projected warming expected to occur over the next century. 
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In the second chapter of the thesis, I assessed the effect of provenance and local 

adaptation of sugar maple seed collected from across the entire species range to 

conditions within, at, and beyond its current species range. 1 hypothesized that the 

demography at the species' range limit would be constrained due to the species being 

adapted to conditions within the species range. To investigate this, I established a 12 

site seed transplant study that included sites within the current species range, at the 

range li mit ( ecotone ), and beyond the current species range li mit to assess the ability 

of sugar maple seed to germinate, establish seedlings, and survive in association with 

the local environmental conditions. I made the following predictions: (i) southem 

seed provenances will be the most maladapted to the environmental conditions 

occurring at and beyond the current northem range limit, as they are the furthest in 

proxirnity oftheir origins (provenance effect) , (ii) early seedling establishment will be 

best within sites which meet the species specifie climatic requirements needed to 

ensure seed germination ( climate effect), and (iii) upon seedling establishment, local 

microsite conditions more closely resembling those within the range limit will favour 

higher survival rates (microsite effect). 

While in the first chapter I manipulated temperature and temperature timing on seed 

germination in a controlled environment, and in the second chapter 1 modified the site 

and as a result the local environmental (abiotic and biotic factors) contributors, in the 

third chapter, 1 was interested in investigating the natural system. In particular, I was 

curious to know how the resident environment at the ecotone intluenced seedling 

recruitment. T hypothesized that priority effects (imposed by resident boreal tree 

species) slow recruitment oftemperate tree species, and thus contribute to the lag in 

temperate tree range expansion. To do so, 1 investigated the relative importance of a 

series of contributing factors highlighted as influential to species migration ; seedling 

dispersion, fecundity and substrate favourability, and the influence of the local biotic 

environment - as a pro x y of the potential effect of resident trees. 1 made the fo llowing 
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predictions: (i) boreal trees will influence the spatial distribution of substrates within 

a stand, with which these substrates will (ii) influence the seedling density of 

temperate tree species, and (iii) limited seedling dispersal will magnify priority 

effects from boreal tree species. 

The thesis then ends with a global conclusion that sumrnarizes the key findings and 

advancements made within each of the three main chapters and how they fit in the 

scientific literature. T also offer sorne general emerging ideas/advances in practices 

and theories, followed by sorne limitations of the research. T then conclude by 

offering sorne potential future research directions that would further enrich our 

understanding of range dynamics und er elima te change that were not taken in this 

thesis. 
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1.1 Abstract 

A climate warming of2-S°C by the end of the century will impact the likelihood of 

seed germination of sugar maple (Acer saccharum ), a dominant tree species which 

possesses a restricted temperature range to ensure successful reproduction. We 

hypothesize that seed origin affects germination due to the species' local adaptation to 

temperature. We tested this by experimentally investigating the effect of incubation 

temperature and temperature shifting on sugar maple seed germination from 7 

different seed sources representing the current species range. Survival analysis 

showed that seeds from the northem range had the highest germination percentage, 

white the southern range had the lowest. Mean germinat ion percentage under constant 

temperatures was best when temperatures were ~S°C, whereas germination 

percentages plumrnet at temperatures ~ Il oc (S.8%). Cool shifting increased 

germination by 19.1% over constant temperature treatments and 29.3% over warm 

shifting treatments. Both shifting treatments caused earlier germination relative to the 

constant temperature treatments. A climate warming ofup to +S°C is shown to 

severely reduce germination of seeds from the southern range. However, under a 

more pronounced warming of 7°C, seed germination at the northern range become 

more affected and are comparable to seed from the southern range. This study states 

that the high seed germination percentage found in sugar maple at the northern range 

makes it fairly resilient to the warmest projected temperature increase for the next 

century. These findings provide forest managers the necessary information to make 

accurate projections when considering strategies for future regeneration whi te also 

considering climate warrning. 

Keywords: Acer saccharum, climate change, climate warming, seed germination, 

stratification, sugar maple, temperature. 
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1.2 Introduction 

Recent climate change projections have global mean temperature increasing 2-5°C for 

the mid-latitudes ofNorth America (between 40°N and 60°N) by the end of the 21st 

century (Feng et al., 2014). Coupled with increasing uncertainty surrounding inter

annual variability of precipitation in the future (Kharin et al., 2007), changes in plant 

population and community dynamics become an area ofconcern (Walck et al., 2011; 

McCarragher et al., 2011 ). Noticeable shifts in species distributions have already 

been documented (Lenoir et al. , 2008; Beckage et al., 2008), and are predicted to 

continue in the future (Zhu et al. , 20 12) as species attempt to maintain the ir 

bioclimatic niches (Goldblum and Rigg, 2005; Iverson and Prasad, 2010). 

Tree migration will hinge on the successful germination, maturation and eventua1 

reproduction at higher altitudes and latitudes (Loarie et al., 2009; Chen et al. , 20 Il). 

A species which fai1s to migrate at fast enough rates will be subjected to increasing 

stress and be forced to adapt to the new climatic regimes or it will decline. As a 

resu1t, this cou1d likely cause pockets of variable fitness and reproductive success 

within the current species range (Dangleish et al. , 201 0; Walck et al., 20 Il). Under 

the predicted changes, significant reductions in reproductive success among trees 

should be expected, especially when species specifie clirnate and temperature 

limitations exist (Chuine and Beau bien, 2001 ). A possible mismatch between 

genotype and the environment can bring into question the long term persistence of the 

species, particularly in terrns of successful reproduction (Hoeksema and Fored, 2008 ; 

Blanquart et al. , 20 13). Regional variability in reproductive success could become 

concerning as species at the trailing and/or leading edge would be exposed to the 

highest pressures within forest transitions zones (Hu and He, 2006; Sexton et al. , 

2009). 
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Sugar maple (Acer saccharum Marshall.) is a long lived, deciduous and shade

tolerant tree species found present on 12.5 million ha-1 of northeastern part of North 

America (Godman et al., 1990). A major ecological and economically important tree 

species (it supports a C$200 million annual syrup industry (FPAQ, 20 16), sugar 

maple could face significant declines in reproductive success due to its seed requiring 

very specifie abiotic conditions to ensure germination (Bradford, 1995; Caspersen 

and Saprunoff, 2005). It possesses a morphologically mature, yet dormant seed 

embryo that requires an extended period of stratification (i.e. cool and moist 

conditions) at near freezing temperatures to break dormancy and ensure germination 

(Zasada and Strong, 2003). A dormant seed is one that is unable to germinate in a 

specified period oftime due to any combination(s) of the following reasons: (i) 

immature embryos, (ii) seed coats impermeable to water and/or gases, (iii) inhibitors, 

(iv) light requirement, and (v) mechanical restrictions by the seed coat, which are 

otherwise favorable for its germination (Maguire 1984; Baskin and Baskin, 2004). 

Typically, sugar maple seeds will develop and ripen by late summer (September 

October) , disperse by late fall (October-December), and remain dormant for the 

winter months before germinating in spring. Future climatic conditions could impact 

the specifie time and temperature requirements needed for germination, ultimately 

impacting the long-term persistence of this tree species. Tt is predicted that climate 

change will lead to sharper seasonal changes, particularly in early spring, where 

temperature shifts are most abrupt. lt also is the time ofyear where many of the 

earliest !ife stage processes (i .e., germination and seedling establishment) take place. 

Climate warming willlead to earlier springs, which in return will cause faster snow 

melt and reduced snow cover in northern altitudes and latitudes (Mankin and 

Diffenbaugh, 20 15). These abrupt changes could lead to a much smaller window of 

stratification and in turn, reduce the likelihood of seed germination for sugar maple. 

Another concern with earlier snow melt is the potential for increased freeze-thaw 

events ; which can expose seeds and seedlings to abrupt changes in colder 

temperatures that will increase early germinant mortality (Decker et al., 2003). 



Freeze-thaw events as a result of earlier springs have already been documented to 

severely impact other important processes, such as bud break, flower development, 

and seed ripening, which ail could further reduce reproductive success (Chuine and 

Beau bien, 2001 ; Morin et al., 2008; Drescher et al., 20 14). 
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Currently, little is known about the variability associated with climatic requirements 

for germination and the potential influence it may have across a species range 

(Hedhly et al., 2009). Sugar maple provides an ideal candidate to investigate these 

concerns, as it maintains a large range and is sensitive to climate (Goldblum et al., 

2010). White sorne studies have assessed germination percentage (directly or 

indirectly) within the sugar maple range, most have been limited to either a single 

seed origin or only provided minimal insight into the influence of temperature on 

germination (ex. Webb and Dumboff, 1969; Simmonds and Dumboff, 1974; 

McCarragher et al., 2011). To our knowledge, only limited research in Acer bas been 

conducted at the northem range margin (Tremblay et al. , 1996; Graginac et al. , 2014), 

white largely ignoring the mid- and southem species range. White it bas long been 

known that seed germination is likely to be linked to seed origin (Mayer and 

Poljakoff-Mayber, 1975), it has yet to be thoroughly assessed with the influence of 

temperature and temperature shifts. 

The general objective ofthis study is to perform an assessment ofthe impact of local 

adaptation, temperature, and temperature shifting on seed germination. Such 

information is necessary to make more accurate predictions of future tree 

reproduction. We hypothesize that seed origin affects the range of temperature for 

optimal germination due to local adaptation. More specifically, our primary 

objectives in this study were to ( 1) identify the optimal incubation temperature across 

the species range, and for each seed origin; (2) identifY the influence ofwarmer and 

cooler temperature shifts to sirnulate an early or late spring and its associated effects, 
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and (3) identify the potential changes in future seed germination across the range of 

sugar maple under a series ofwarming climate scenarios. We did this by 

imp lementing a full y facto rial experimental design to investigate the influence of nine 

constant incubation temperature treatments, sixteen warm shift treatments, and 

sixteen cool shift treatments on seeds from seven different origins. 

1.3 Methods 

1.3.1 Seed, Source(s) , and Storage 

In this study 28,700 sugar maple seeds from 7 origins across the current species range 

were used (Figure. 1.1). Ali seeds were co llected in the fa li of 20 13 and were air dried 

at room temperature (20°C) until seed moisture content ranged between 9.5% and 

15%. Once dried, the samaras were mechanically tumbled unti1 the wing portion of 

the seeds was removed. Seeds were then passed through an air/gravity feed sorter, 

where filled seeds were separated from unfilled seeds, which ensured seed viability 

(filled seeds) above 95% for each seed origin. To further reinforce that seeds were 

fil led, we used either x-rays on a subset of seeds from each origin or pressed the seeds 

between fingers during counting, prior to the commencement of the germination trials 

(Graignic et al., 2014). Seeds were stored at -3°C for two months before initiating the 

experiment (Yawney and Carl, 1974). 
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Figure 1.1. Approximate seed origins used in the study: (1) Ville-Marie, Québec, (2) 

Rivière du Loup, Québec, (3) Montmagny, Québec, (4) Sherbrooke, Québec, (5) 

Pennsylvania, U.S .A, (6) Kentucky, U.S.A, and (7) Tennessee, U.S.A. Seed origins 

are overlaid on sugar maple's native species range which is adopted from Little 

(1971) . 

1.3.2 Treatments- Constant Incubation Temperature 

Ali seeds were soaked in tap water and kept at 3°C for 14 days (Janerette, 1979); a 

common treatment done to soften the hard seed coat, and provide a period ofwater 

uptake, which increases overall germination success (Webb and Dumbroff, 1969)_ 

This process mirnics the natural stratification that occurs during the cool, wet 

conditions of overwintering and early spring. Forty-one seed lots ( 100 seeds/lot) from 



22 

each of the seven seed origins were prepared and individua lly wrapped in mesh 

screening and enclosed within moist Kimpak-cellulose wadding, and then wrapped in 

aluminium foi! (Janerette, l978b) to be used for ali combination oftreatments. Seed 

lots from each seed origin were placed within a series of growth chambers 

(CONVTRON, ATC26, Winnipeg, Canada), each maintained at the following 6 

constant temperatures : 3°C, 5°C, 7°C, 9°C, 11 °C, I3°C for 90 days. Since growth 

chambers present limitations to work at low temperatures (:::J 0 C), Sanyo MIR -154-

PA incubators (SANYO Electric Biomedical Co. , Osaka, Japan) were used for the 3 

colder constant temperature treatments: -1 °C, 0°C, 1 oc. Nine out of the 41 seed 

lots/origin were selected at random from each ofthe 7 origins (7 seed origins x 9 

constant stratification temperatures) . A HOBO Pendent temperature data Jogger 

(Onset, Boume, Massachusetts, USA) was placed in each of the chambers and 

incubators to ensure that the assigned temperatures remained consistent throughout 

the entire measurement period. Temperature was recorded hourly over the entire 90 

days. Seed germination was monitored weekly, where germinated seeds were counted 

and discarded, yielding a temporal sequence of germination. Protrusion of the radicle 

through the seed coat was the criterion for which germination was deemed successful. 

1.3.3 Temperature Shifts 

In addition to the nine constant incubation temperature treatments, we investigated 

the potential influence of temperature shifting on seed germination. By sudden ly 

changing the incubation temperature during the experirnent provides insight into 

abrupt changes in temperature that may occur in an early or tate spring once snow has 

melted (when present). We chose to change incubation temperature after 2 weeks 

(half the time period industrial nurseries use for germination trials), as a means of 

mimicking the influence of rapid temperature change, comrnonly seen in earl y spring. 
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To conduct the shifting treatments, we placed seed lots in either a cool ( -1 °C, Ü°C, 

1 °C, 3°C) or warm (7°C, 9°C, 11 °C, 13°C) initial incubation temperature for 2 

weeks. Seed lots were then shifted to one ofthe opposite treatments (i.e., seed lots 

initially placed in a cool incubation temperature were then shifted to one of the warm 

incubation temperatures, and vice versa) for the remainder of the study (Il weeks). 

For example, 4 individual seed lots from Kentucky that were initially placed at -1 oc 
for 2 weeks, wou id be transferred to each of warmer treatments {7°C, 9°C, 11 °C, and 

13°C) and would be identified as a warm shift treatment. This would be repeated for 

each seed origin and each treatment combinat ion for both the warm and cool shifts 

using the remaining 32 seed lots/origin for a total of224 seed lots (22,400 seeds). 

1. 3. 4 Statistical A nalysis 

Data were analyzed following the recommendations ofMcNair et al. , (2012), where 

survival analysis is deemed the most appropriate method to quantify seed germination 

(Pérez and Kettner, 20 13). This statistical approach also allows for the analysis of 

individual seeds rather than cumulative germination percentages, white providing the 

flexibility to interpret multiple contributing factors simultaneously over repeated 

measures (McNair et al., 2012; Pérez and Kettner, 2013). In our study, seeds that 

germinated (the event of interest) within the study period (90 da ys) were coded as 1. 

Seeds that did not genninate by the end of the study were considered to be "right

censored" observations and coded as O. Germination was estimated using the Kaplan

Meier non-parametric maximum likelihood estirnator to estimate the survival function 

for each seed origin and temperature treatment. The survival function (S(t) = Pr (T>t) 

determines the event time (i.e., the time required for a seed to germinate) for a 

random variable T that exceeds a given time t. S is the probability between 0 and 1, 

while T must be a positive number. Essentially, survivor curves will begin with S(t)= 
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1 when T is 0, and decrease in a step function as t increases. The Kaplan-Meier 

estimator of the survivor function S(t), is a nonparametric method that will allow 

inferences into censored data and make no assumptions about the distribution oftime 

to germinate. If k distinct event times are denoted as t 1 < t2< . . . <tk, the Kaplan-Meier 

estimator S(t) fort, :s; t :s; tk would be given by: 

S(t) = II ( 1 - di 1 ni) 

i: ti :s; t 

where ti represents a distinct event time (week of stratification); ni are the number of 

individuals (seeds) at risk ofthe event (germination) at each ti; and di represents the 

number of individuals censored at time ti. Our study follows other standard 

germination experiments, where the observation scheme is commonly known as 

'periodic simultaneous observation - seeds were exarnined weekly rather than 

continuously (interval censored data). Although the Kaplan-Meier estimator 

calculates the survivor function when event times are assumed to be exact, it is safe 

and appropriate to apply this analysis to interval censored data when no seeds are !ost 

during the weekly counts (McNai.I· et al., 2012). Weekly germination in this study 

refers to the number of seeds gerrninated in a given week, whereas cumulative 

germination refers to the germination at the end ofthe study. The null hypothesis is 

that survival functions are the same for ali seed origins and ali temperature 

treatments. We assessed the influence oftemperature by comparing (1) constant 

incubation temperatures, (2) a warm temperature shift, and (3) a cool temperature 

shift for each seed origin. Additionally, we conducted pairwise comparisons to 

identity statistical differences between origins and treatments using the Fleming

Harrington test (McNair et al. , 2012). Supplemental one-way ANOVAs were 

conducted to compare cumulative germination percentages between sites and 

temperature treatments within sites. When data did not meet the assumptions of 

normality and homogeneity ofvariance, an inverse transformation (11(1 +X)) was 
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used. Ali post hoc analysis for the cumulative germination data were perfo.rmed using 

the Tukey- Kramer's test (TukeyHSD). All analyses were performed using the 

statistical software R v 3.0.3 (R Development Core Team, 2015) with the 'survival' 

package (Themeau, 20 15). 

1.3.5 Climate Warming Scenarios 

We used the North American Spatial Climate Mode! (McKenney et al. , 20 Il) to help 

predict the potential influence of climate warming on sugar maple seed germination. 

Using each ofthe seven seed origin's approximate location (Table 1.1), we placed a 

circular buffer (50 km radius) around the central point to calculate the local annual 

and monthly mean temperature for the years 1901 to 201 O. 

Table 1.1. Approximate geographicallocation (decimal degrees) ofsugar maple seed 

sources used in the study. 

Seed Source Latitude Longitude 
Tennessee, USA 35.78° -83.67° 
Kentucky, USA 38.26° -84.95° 

Pennsylvania, USA 41.13 ° -77.62° 
Sherbrooke , Canada 45.49° -72.17° 
Montmagny, Canada 46.95° -70.46° 
Ville-Marie, Canada 4 7.33° -79.39° 

Rivière-du-Loup, Canada 47.73 ° -69.48° 
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We then calculated the local stratification temperature; determined by choosing the 

likely stratification window: approximately a period of 90 da ys of cool, moist 

conditions required for sugar maple seed to germinate (Janerette, 1979). This was 

done by taking the mean ofthree months, beginning with the first month closest to the 

freezing point, followed by the subsequent 2 following months in late winter/early 

spring. To assess the influence of projected climate warming on seed germination 

success, we investigated three scenarios: (i) +2°C warming, (ii) +5°C warming, and 

(iii) +7°C warrning. These warrning scenarios were theo added to the initial 

stratification temperature determined at each site for the 1901-201 O. The resulting 

cumulative germination and percent change (in relation to 1901-2010) was based on 

the fmdings of the constant incubation temperature treatments in the present study by 

seed origin. 

1.4 Results 

1.4.1 Effects ofSeed Origin and Constant Incubation Temperatures 

Cumulative germination percentage was on average (across ali origins and ali 

constant incubation temperatures) 51.4%, with weekly germination percentage 

peaking at week 7 (12 .2% of total) (Figure 1.2). The effect of seed origin on 

germination was found to have a stronger effect than constant incubation temperature 

(x2=7552.60, p < 0.0001 ; Table 1.2) . We found a clear dichotomy between the 

survival curves (Figure 1.3A) and cumulative germination percentages (Figure 1.4) 

for the northern (Sherbrooke, Montmagny, Ville-Marie and Rivière-du-Loup) and 

southern (Tennessee, Kentucky, and Permsylvania) seed origins (fmal cumulative 

mean germination: 70.2% and 32.1 %, respectively). Northern seed origins also tended 
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Figure 1.2. Mean cumulative number of seeds germinated per week and standard 

error bars by temperature treatment. 

to peak in germination much faster (week 6) than those in the southem range, where 

germination peaked roughly two weeks later (Figure 1.5). We found that ali seed 

origins showed statistically different survival curves, except for the following three 

pairs: Pennsylvania with (1) Tennessee, (2) Kentucky, and (3) Sherbrooke with 

Montmagny (Table 1.3, Figure 1.3A). The best overa11 cumulative germination 

percentage by seed origin was from the most northem seed source: Rivière-du-Loup 

(75.1 %), whi te the worst came from Kentucky (28.4%) (Figure 1.3A). 
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Table 1.2. Seed origin and temperature treatment effects on weekly germinat ion rate . 

Significant values determined in bold using a Fleming-Harrington test (a. ::; 0.05). 

1 
1 

Seed Origin Treatment Chi-Square DF p 

l Seed Origin 7552.60 6 <0.0001 
Overall 

1 
Constant 1782.74 8 <0.0001 - ----+-

Cool Shift 408.22 15 <0.0001 

1 
Wann Shift 1308.72 15 <0.0001 - ---+- -Constant 192.36 8 <0.0001 -

Tennessee Cool Shift 138.10 15 <0.0001 
Wann Shift 92.56 15 <0.0001 - ,..- ---+- -

Constant 158.7 1 8 <0.0001 --
Kentucky Cool Shift 39.54 15 J 0.0005 

1 Wann Shift 122.20 15 <0.0001 
Constant 498.88 

-f--
8 <0.0001 ...____ 

-f--- -- -Pennsylvania Cool Shift 265.2 1 15 
1 

<0.0001 
Wann Shift 373.28 1~ ---t <0.0001 

+--- - -f--
Constant 407.83 <0.0001 

~--
Sherbrooke ' Cool Shift 248.91 15 <0.0001 

Wann Shift---J. 209.19 15 <0.0001 
-f- --

Constant 699.18 8 <0.0001 

1 

- f---
Montmagny Cool Shift 360.47 15 <0.0001 

-
Wann Shift 502 .05 15 <0.0001 

1 
1 1 

1 - -----
Constant 792.20 8 <0.0001 - - -l 

Ville-Marie Cool Shift 433.56 15 <0.0001 

J Wann Shift 548.82 15 l <0.0001 -- _.. 
-~--· 

Constant 763 .45 8 <0.0001 
+-- -- r-- -1 

Rivière-du- Cool Shift 659.93 15 <0.0001 -- 1 1 

Loup Wann Shift 782.30 15 <0.0001 - - -
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The effect of constant incubation temperature on the germination was highly 

significant (l= l782.74, p < 0.0001 , Table 1.2, Figure 1.3B). When temperatures 

were maintained ::;5 °C, cumulative germination was generally high (-74%) (Figure 

1.6).The poorest cumulative germination occurred at the highest incubation 

temperatures: II °C (8.4%) and I3°C (4.1%) (Figures 1.3B and 5). Ali constant 

incubation temperatures >5°C were found to be significantly different from cooler 

temperatures (p < 0.0001, Table 1.4) (See AnnexA- Tables Al.l-Al.1.7 for 

pairwise comparisons of constant incubation temperature differences by seed origin). 

Cooler constant incubation temperatures (::;7°C) also impacted the timing of peak 

germination, where they tended to germinate earlier than those at higher temperatures 

(Figure 1. 7 A). 
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Figure 1.3. Kaplan-Meier mean estimates and 95% confidence limits of survival 

functions for the probability of not germinating within constant incubation 

temperatures versus weeks stratified for (A) seed origin, and (B) temperature. Seed 

origin and temperature treatments with the same letters were not significantly 

different (Fleming-Harrington test, a. ~ 0.05). 
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1.4.2 Effects of Temperature Shi/ting 

Cool shifting significantly improved cumulative germination percentage by 19.5% 

and caused earlier peak germination by one week when compared with the constant 

incubation treatments (l=408.22, p<O.OO 1, Table 1.2, Figure 1.2) . Cool shifting was 

increasingly beneficiai to cumulative germination percentages as seed origin shifted 

northward (Figure 1.4). Seeds originating in Tennessee experienced a slight decline (-

0.2%) compared with constant incubation temperatures, but differences from constant 

incubation temperatures were statistically significant only for the two northernmost 

locations: Ville-Marie (+26.6%) and Rivière-du-Loup (+28 .0%; Figure 1.4). Cool 

shifting also tended to minimize the differences in cumulative germination between 

treatments within sites, where 6.3% was found to be the largest difference in 

germination between -l0°C and -Il oc (See AnnexA - Tables Al.8-Al.23. for 

pairwise comparisons ofwarm and cool shifting differences by seed origin) . 
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Table 1 .3. Pairwise comparisons for seed origin effect on seed germination. 

Significant differences in bold (Fleming-Harrington test, a :S 0.05) . 

. ~ 
'-' rn ·E >. -"' Q. 

-'<: cc !lJ ::J 

~ > G "' "' . iij 0 >- G >= :2 .D ::: ·- ...J 
c rt: 

" 6 i > ' 
<.> c ë2-9 ::.L c ~ :2 5 'J c... 

Tennessee 0.0002 0.1724 <0.0001 <0.0001 <0.0001 <0.0001 
Kentucky 0 .~4 74 <0.0001 <0.0001 <0.0001 <0.0001 

Pennsylvania <0.0001 <0.0001 <0.0001 <0.0001 

Sherbrooke 0.0804 <0.0001 <0.0001 

tl!ontmagny <0.0001 0.0105 

Ville-Marie <0.0001 

Alternatively, warm shifting significantly reduced cumulative germination percentage 

by 11 .2% when compared to the constant incubation temperature treatments, and by 

29.3% when compared to the coo l shifting treatments (l=1308.72, p<0.001, Table 

1.2, Figure 1.4). Warm shifting also caused earlier peak germination by one week 

when compared to the constant incubation temperature treatments (Figure 1.2). 

Reducing the magnitude ofwarm shifting to :S7°C on average resulted in reasonably 

high germination percentage (59%), while germination drastically declined at warmer 

(>7°C) shifts (34.5%) (Table 1.5) . Reductions in germination percentage due to 

warmer shifts (when compared with constant incubation temperatures) were 

minimized the most for Tennessee and Kentucky, the southernmost seed origins (-

8%). Concurrently, the most severe reductions in germination due to warmer shifts 

occurred within sorne of the northernmost latitudinal seed origins : Montmagny(-

12.4%) and Vi lle-Marie ( -19.9%) (Figure 1.4). 
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Figure 1.4. Cumulative mean seed germjnation (%) by seed origin for constant 

incubation temperatures, warm, and cool shift treatments. Capitalletters refer to site 

comparisons, where lower case refer to treatment differences within site only. 

Different characters are statistically significant (Fleming-Harrington test, a :S 0.05) 

1.4.3 Estimating Possible Future Germination under Climate Warming 

The stratification temperature for each seed origin also decreased with a northward 

latitudinal shift . In a warming scenario of +2°C, we found decreases in germination 
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by as much as 27% and 32% in Kentucky and Pennsylvania seed origins respectively. 

Minimal reductions (<3%) in germination percentage occurred in origins northward 

of Pennsylvania under the same warming scenario. Under the second climate 

warming scenario, +5°C, significant declines in germination occurred across the 

entire species range (Table 1.4). Again however, the most northern seed origins 

(Ville-Marie and Rivière-du-Loup) experienced only slight declines (<4%), where ali 

other origins experienced declines of2:14%. In the most dire of climate scenarios 

(+7°C), cumulative germination was greatly reduced regardless of origin. Sharp 

declines (-20%) were seen across the range and by as muchas 75% (Sherbrooke). 

Tnterestingly, under this scenario the !east impacted cumulative germination occurred 

in the species southern range (Tennessee, -23%) (Table 1.6). 
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Figure 1.5. Cumulative seed germination by (a) constant incubation temperature, (B) 

cool shifting, and (C) warm shifting by weeks stratified. 
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1.5 Discussion 

This paper shows a novel experimental procedure to test for the effect of seed origin, 

constant incubation temperature and temperature shifting on seed germination. We 

were able to assess the potential deleterious impacts of future climate warming on 

sugar maple, which is known to have a very narrow temperature requirement to 

ensure successful germination (Zasada and Strong, 2003; McCarragher et al., 2011). 

We fou nd strong evidence of local adaptation of seed germination to temperature and 

temperature shifting. We were also able to identify precisely the ideal stratification 

temperature, timing, and temperature thresholds associated with germination for 

sugar maple throughout its range. When comparing to constant incubation 

temperatures, seeds originating in the southern range were much better adapted to 

warm shifting, white cool shifting was more beneficiai to the seeds from northern 

latitudes (Figure 1.4). 
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1. 5.1 Effects of Constant Incubation Temperature 

37 

The best cumulative germination percentage was observed at constant incubation 

temperatures below <1 °C, coupled with subtle differences up until5°C, considerable 

declines occur beyond 5°C regardless of seed origin (Table 1.4, Figures 1.3B and 

1.6). These findings reinforce the fact that sugar maple does hold the capacity to 

germinate under snow cover (Tubbs 1965), where temperatures are stable around the 

freezing point. We a Iso found that sugar maple is capable of germinating below the 
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freezing point, where cumulative germination reached 73% in the -1 oc treatment 

(Figures 1.3B and 1.6), and potentially could germinate at colder temperatures. In this 

study, by using a large range of temperatures and by sampling seeds from a wide 

range of origins we now can accurately report the influence of temperature and 

temperature shifting throughout the natural distribution of sugar maple. Wh ile 

McCarragher et al. , (20 1 1) argued that 7°C pro vides the optimum incubation 

temperature, we consistently found that regardless of seed origin this temperature is 

systematically the beginning of germination decline (Figure 1.6). Beyond an 

incubation temperature of7°C, germination percentage decline further, and nearly 

cease beyond I3°C (4.1 %) (Figure 1.6) . These findings coïncide with other previous 

studies (Shih et al., 1985; Hance and Bevington, 1992; McCarragber et al., 2011 ), 

whom found little (<3%) or no seeds germinating beyond this temperature. At these 

warmer temperatures, the leve! of inhibitors remains high (Webb et al., 1973) and 

restricts the morphological and anatomical changes required for embryonic axis 

growth, thus reducing the likelihood of germination (Simmonds and Dumbrof, 1974; 

Hance and Bevington, 1992). Increased seed respiration rates also occur, which have 

been shown to be responsible for loss of seed viability at higher temperatures 

(Simmonds and Dumbrof, 1974). We also incurred much higher frequency of the 

presence and development of fungal communities, which were not present at cooler 

temperatures (<9°C) . Fungal communities have been reported to colonize maple 

seeds at high temperatures and ultimately could contribute to increased contamination 

leading to seed death (Shih et al., 1985). 
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Table 1.4. Pairwise comparisons for overall constant incubation temperature effect on 

seed germination. Significant differences in bold (Fleming-Harrington test, a S: 0.05) . 

ooc l°C 3°C 5°C 7°C 9oc ll °C 130 c 

-l°C 0.5329 <0.0001 0.8879 0.0023 <0.0001 <0.0001 <0.0001 <0.0 001 

0°C 0.0859 0.0134 0.0177 <0.0001 <0.0001 <0.0001 <0.0 001 
l °C <0.0001 0.9999 <0.0001 <0.0001 <0.0001 <0.0 001 

3°C <0.0001 <0.0001 <0.0001 <0.0001 <0.0 001 
soc <0.0001 <0.0001 <0.0001 <0.0 001 
7°C <0.0001 <0.0001 <0.0 001 
9oc <0.0001 <0.0 001 
li aC 0.881 

1.5.2 Shifting Temperatures 

Shifting the temperature in our treatments significantly influenced the cumulative 

germination percent. We found that warm shifting significantly reduced germinatton 

for ali seed origins, while only the magnitude differed (Figure 1.4). The warm shifting 

treatments in our study were used to rnimic what could essentially happen naturally in 

a warmer and earlier spring, where increased snow melt and reduced snow pack are 

predicted to occur with climate change (Mankin and Diffenbaugh, 20 15). Rapid 

spring warming essentially would impact seeds negatively in number of ways: ( 1) 

shorter period of overwintering stratification, (2) seeds and seedlings which are able 

to germinate would no longer be insulated by the snow caver and be subjected to 

potentially multiple freeze-thaw events, (3) lose the competitive advantage of early 

establishment over species unable to germinate/establish under snow, (4) change m 

water supply: from slow, progressive to rapid snow melt, and finally (5) expose 

germinates much earlier to herbivory, bacterial and fungal infection. 
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Figure 1.7. Cumulative germination by seed origin under (a) constant incubation 

temperature, (B) coo l shifting, and (C) warm shifting by weeks stratified. 
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ln contrast, for seeds exposed to cool shifting treatments we found that germination 

was generally greatly improved (Figure 1.4). A longer, cooler spring essentially can 

prolong the stratification window (allowing seed development to break dormancy), 

delay snow melt, reduce the onset of competitors, and reduce bacterial and fungal 

infection. Surprisingly, the only seed source to not experience a net benefit of a cool 

shifting, Tennessee, came at the southern range of sugar maple. We suggest that this 

lack of improvement in germination was likely due to the seeds adapting more readily 

to warm shifting and a warmer climate it bas adapted to, which are much more likely 

to occur at tbese southem latitudes (Figure 1.8). 

1. 5. 3 Germination Timing 

Tt is extremely difficult to predict exactly when a seed will germinate with so many 

factors tbat must be considered (abiotic and genetic), but this study reinforces the link 

between seed origin and peak germination. Slight variations in genetics could be 

playing a significant role in seeds breaking dormancy and germinating over the 

natural species' range (Sexton et al. , 2009). Variations in phenology were apparent 

within our study as differences occurred between seed origin and incubation 

temperature, wbere a number of subtle differences in time to germination. Seeds from 

ali origins germinated after 4 weeks, wbich is consistent with most germination 

studies (Janerette, 1978a; Shih et al., 1985). As a wbole, germination followed the 

expected distribution: few seeds germinated early (before week 5), most in mid

weeks (6-9), and few beyond (Figure 1.3). Unlike McCarragher et al., (2011), who 

found seeds from Illinois (central origin) tended to germinate earliest (within 25 

days) , we found that seeds from the northern range not only started to germinate 

earlier, but also peaked 2-3 weeks sooner (week 6) tban tbose from the central range 

(week 1 0) or southern range (week 8-9) (Figure 1.5). We suggest that sugar maple bas 
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adapted locally to temperature, where in cooler climates seeds will germinate earlier 

under snow to benefit from colonizing when competition is low. On the contrary, in 

warmer climates, the competitive advantage to germinating early under the snow or 

shortly after is minimized or !ost, thus delaying germination proves to be 

advantageous; allowing competition to provide sugar maple a protective cover from 

warmer temperatures and increased water stress (Berkowitz et al. , 1995). 

Wh ile in this study we did perform pre-incubation treatments as a means of getting 

seeds to germinate uniformly (at !east in terms of a starting point) (Janerette, 1978a), 

our study reinforces the fact that slight variations/abnormalities within the seed and 

seed structures of the same species may exist. As pointed out by Sirnmonds and 

Dumbrof (1974), lower incubation temperatures help facilitate the production of 

gibberellins, cytokinins and the removal ofinhibitors (abscisic and phenolic acids) in 

sugar maple seeds (Enu-Kwesi and Dumbroff, 1980). Attaining a full energy charge 

necessary for normal cellular function also occurs at lower temperatures, and could 

become limited if temperatures are too high. While considerable research has been 

conducted on the inner workings ofsugar maple seed (ex. Shih et al. , 1985; Walker et 

al.,' 1985), we speculate that differences within these processes are linked to seed 

origin and influenced by the species local adaptation to temperature. Ultimately, if 

temperatures remain or become high during a portion of the stratification period, 

seeds may experience dormancy induction (secondary dormancy). This occurs when 

seeds are supplied with water but are exposed to unfavorable conditions (i.e. high 

temperature, low oxygen) after breaking primary dormancy (Ellis et al., 1985). This 

may have occurred within our study where seeds which were exposed to the warmest 

shifts germinated rapidly (Figure ! .SC), followed by a rapid decline, presumably 

becoming dormant again because of the high temperature. 
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Figure 1.8. Monthly mean temperature for each sugar maple seed source used in the 

study for the time period 1901-2010. Month1y mean temperature was extrapolated 

from McKenney et al. (20 11) elima te mode!. 

1.5.4 Global Warming and Future Implications on Germination 

As temperature is predicted to increase as much as + 7°C in the mid latitudes ( 40-

600N) ofNorth America by the end ofthe 21st century, drastic changes undoubtedly 

will occur in many key bio1ogical processes, in particular, phenology, growth and 

productivity, and species interactions (Morin et al., 2008). Being able to accurately 

predict how each these processes wiii change (alone and together) becomes extremely 

critical for future forest management strategies. This task will prove extremely 
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difficult , as the time frame for the expected warming is to take place within one or 

two tree li fe cycles. This me ans that trees that are currently of reproductive age and 

their offspring will face these predicted rapid warming events. It thus becomes 

imperative to assess now the resilience and ability of different key species to 

successfully germinate, establish, grow, and reproduce under the rapid warming 

expected by the end of this century (Kremer et al. , 2012). Providing forest managers 

this necessary information helps identify differences in germination within a species 

and allows for better prediction and strategies when identifying the ideal planting 

stock or adjusting expectations for natural seeding. Changes in initial !ife stages (seed 

germination and seedling establishment) could eventually become important at larger 

scales if they are not initially constrained maternally (flower, fruit and seed 

development). A Jack of successful germination will slow future tree migration rates, 

as a particular issue when considering the potential deleterious impacts of climate 

change (Zhu et al., 20 12). 



Table 1.5. Mean cumulative germination % by cool and warm shifting treatment 

differences. Note: To assist in brevity, here we present the difference in shifting 

treatments ( example: a treatment initial! y placed at -1 oc and shifted to 7°C would 

have a difference of +8 and reported below as so ). 

Cool Shift Mean Cumulative WarmShift Mean Cumulative 
T reatment (0 C) Germination (%) T reatment (0 C) Germination (%) 

-14 68.43 +14 29.43 
-13 71.29 +13 37.00 
-12 70.21 +12 21.00 
-11 72.71 + 11 17.86 
-10 66.38 +10 34.19 
-9 71.43 +9 58.86 
-8 66.71 +8 43.29 
-7 72.57 +7 67.14 
-6 71.62 +6 48.57 
-4 68.14 +4 61 .00 
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According to our results, under the current temperature projections (+2°C-7°C) , 

substantial decreases in successful germination of sugar maple seeds are expected to 

occur (Table 1.4). Under the most conservative warming predictions (+2°C), 

cumulative germination percentage could decrease by up to 32% in the midrange of 

the species distribution (species range average: -9.7%). Under moderate warming 

(+5°C), and even upper threshold warming (7°C), substantial declines (up to 75%) are 

expected (Table 1.6). While we understand that these predictions are strictly due to 

temperature, and could be moderated to sorne degree by the amount of precipitation, 

geographie location, and annual variability, we expect germination to decline at even 

higher rates. Morin et al. , (2008) predict a significant reduction in southern 

populations of sugar maple due to decreases in fitness associated fruiting maturation 

caused by later flowering as a result of a delay in dormancy break. Warmer 



46 

temperatures should also be expected to increase drought stress on the ripening 

process and eventual seed maturation, which in turn will affect seed dormancy and 

the conditions required to break dormancy and further impeded the induction 

germination. As an implied mean global warming of3 .2°C, Morin et al. , (2008) 

predict a -25% reduction in species range, which is approximately our findings in 

terms of reduction of germination success at mo derate warming scenarios (Table 1.6). 
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While warming is already occurring and is expected to continue, northern populations 

are believed to be particularly at risk since warming is occurring fastest and at a tirne 

(in the spring) where many key processes (flowering, fruit ripening, stratification) are 

occurring (Bekryaev et al., 2010; Feng et al., 2014). Ironically, even though seeds 

from the southern range had a lower cumulative germination percent, they appear to 

be better adapted to deal with warm shifts. However, as pointed out by Morin et al., 

(2008), the southern populations could quickly become in dire straits if the number of 

cool stratification days are even further limited. Currently, the best germination 

occurs in the upper latitudes even un der the worst of circumstances ( + 7°C) (Table 

1.6). Although these severe declines in germination percentage are expected at the 

northern range, perhaps the current sugar maple regeneration dynamics at the 

southern range could provide insight into future management and germination 

expectations at the northem range. 

Our study points to the sensitivity sugar maple possesses to temperature and 

temperature shifting across its species range in regards to seed germination. We find 

that sugar maple seeds need cooler temperatures (:S5°C) with minimal temperature 

shifting (:S7°C) to ensure successful germination in early spring, regardless of seed 

origin. Using different climate warming scenarios we show that significant declines in 

cumulative germination across the sugar maple species range would occur. Although, 

in a natural setting, the potential negative effect(s) climate warrning could have on the 

reproductive success ofsugar maple will be compounded at each ofthe key stages of 

reproduction required to ensure the successful development of a viable seed in a 

g1ven year. 
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2.1 Abstract 

The ability oftree species to track their climatic niche at rates comparable to climate 

change is concerning, particularly if tho se species are constrained by local adaptation. 

Local adaptation can be beneficiai for range expansion when populations located at 

the leading margin are the fittest. In long-lived, sessile organisms such as trees, local 

adaptation can however slow down range expansion when climate change happens 

much faster than its ability to migrate, leading to the maladaptation ofthese 

populations. Here, we investigate experimenta li y a series of factors thought to 

constrain the seedling phase at the leading edge of the distribution of a dominant tree 

species, sugar maple (Acer saccharum Marshall. ). First, we find that seed provenance 

from the northern portion of the range provides the best opportunity for establishment 

beyond the current range, where current climatic conditions are more sirnilar than 

tho se of the central or southern portions of the spec ies range. Second, white we fmd 

seedling establishment was highest within the species range, survival rates were 

comparab le to those at the range margin and beyond, regardless of seed provenance. 

Third, we find that the local climate is the most influential factor for establishment 

and survival within and at the range margin; however, a Jack of suitable micro sites 

were a lso found to constrain seedling recruitment beyond its mat·gin. Our study 

highlights the complex interaction between climate and microsite conditions required 

to ensure successful seedling establishment. Ultimately, sugar maple risks severe 

maladaptation causing migration lag under a rapidly warming climate if: (i) the 

climate warms beyond its specifie threshold requirements associated with seed 

germination, and (ii) an absence offavourable mjcrosite conditions ensuring seedling 

establishment and survival. 

Keywords: biotic interactions, climate change, demography, local adaptation, 

migration rate, range shift, temperate-boreal forest transition. 
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2.2 Introduction 

Rapid shifts of species geographical ranges are expected to occur along latitudinal 

and altitudinal gradients as species track tbeir climatic niche under global warming 

(Chen et al., 20 Il ; Zhu et al. , 20 12; Duputié et al., 20 15). The challenge is no longer 

to establish whether changes will occur, but rather the rate and magnitude of the shifts 

occurring (Svenning et al., 20 14). Concems however arise for species that may Jack 

the ability to migrate at rates comparable to those projected by the end of this century 

(Parmesan 2003 ; lPCC, 2013) . If a species is locally adapted; better suited to the local 

environment than other populations of the same species (Kawecki and Ebert 2004) at 

its range margin, it could prove beneficiai as it ensures that the genotypes co lonizing 

new areas are the fittest because environrnental conditions are most sirnilar to the 

ones at the margin (Alberto et al. , 2013 ; Atkins et al. , 2016) . Migration lags can 

however result in maladaptation of populations at the range mar gin if the environment 

is changing too fast , which can further slow migration rates (Kawecki and Ebert, 

2004; Chuine 201 0; Franks et al. , 20 14; Svenning et al., 20 14). Reports of species 

range shifts lagging behind the rate of elima te change are common (Loarie et al., 

2009; Chen et al., 20 Il ; Zhu et al. 20 12) and caused by factors such as dispersal 

limitations (Hargreaves et al. , 20 14), unfavourable clirnate (Williams et al., 20 l 0; 

Cahill et al., 20 14), bio tic interactions (HilleRisLambers et al., 20 13 ; Moran and 

Ormond 2015), and unfavourable microsites (Lavergne et al., 201 0; Brown and 

Vellend 2014). Currently, our understanding ofhow these factors interact and play on 

species migration is lacking, particularly at the earliest !ife stages of plants (Sexton et 

al. , 2009; Brown and Vellend 2014; Svenning et al .. 2014) . 

Species distribution models (SDMs) are used to predict the shift of climatic suitability 

areas in response to climate change the standard approach for predicting the dynamics 

ofrange shifts in response to environmental changes (Parmesan 2006; Elith and 
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Leathwick, 2009; Chen et al. , 20 Il). Concems about the ir usage still remain (Shaw 

and Etterson 20 12) despite considerable technical advances (Thuiller et al., 2008; 

Chevin et al. , 201 0; Boulangeat et al. , 20 12). For instance, temperate tree species 

have been projected to be present by the end of this century at locations in the tundra 

where there are currently no trees and the soi! is permanently trozen (McKenney et 

al. , 2007) . These models have been criticized for being too simplistic, and typically 

ignore severa! factors critical to range dynamics such as dispersal abilities and 

barriers, demography, habitat fragmentation, genetic variability, biotic interactions, 

and natural disturbances (Sexton et al. 2009; Lavergne et al. 201 0; Alberto et al. 

2013) . In addition, SDMs Jack the ability to consider how plants can evolve to novel 

environmental conditions (Reed et al., 20 Il ; Moran and Ormond 20 15). Recent 

efforts however, have made great strides to include species-specific phenotypic 

plasticity and evolutionary response to novel ecosystems (Atkins and Travis 201 0; Lu 

et al., 2014). These revealed that species range shifts are significantly constrained by 

local adaptation (Valladares et al. , 2014). As SDMs are predicting shifts of 

climatically suitable areas weil beyond the dispersal and establishment ability of 

many species, mismatches are likely to result in severe maladaptation (Anderson 

20 16). 

Trees are patticularly vulnerable to rapid climate change, where a combination of 

immobility, time to reach reproductive maturity, and limited dispersal collectively 

result in slow demographical changes (Petit and Hampe 2006; Lenoir and Svenning 

2013 ; Aitken et al. , 20 16). Trees are in the ir present location because they were able 

to adapt to the past and current local climate and environmental conditions; however, 

under climate change they must be able to express enough favourable phenotypic 

plasticity (rapidly) ( e.g., leaf out period, flowering, onset of dormancy, growth) to 

ensure persistence in the future (Nicotra et al. , 201 0; Alberto et al., 20 13). Even 

though trees typically possess wide geographie ranges, and can generally have high 
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genetic diversity and gene flow (highly fecund) , these attributes do not necessarily 

translate to fast demographies nor adaptive capacity (Petit and Hampe 2006; Alberto 

et al., 201 3). A locally adapted population at the range margin may possess the 

valuable genetic variation allowing for increased fitness improving migration success 

into nearby environments. However, it could also prove detrimental if the climate 

changes mu ch fas ter than its migration rates of the species and results in species lag 

(Duputié et al., 2015 ; Aitken and Bemmels 2016). 

Typically, species fitness declines towards its range limit due to a combination of 

increased unfavourable abiotic and biotic stressors that are beyond its physiological 

1imits (Sexton et al., 2009; Blanquart et al., 2013; Godsoe et al., 20 17). An increase 

in unfavourable environments occurs as a species gets further from its distribution 

centre ( centre-periphery hypothesis) (Gimenz-Benavides 2007). However, if a 

population can become locally adapted, it could rninimize any potential mismatches 

in fitness and increase the likelihood of adaptation, and thus lead to successful range 

shift (Savolainene et al., 2007; Kim and Donohue 2013; Anderson 2016). Studies 

with a primary focus on deterrnining the driving factors responsible for range lag at 

the seedling stage within the range limits currently remain few (Sagarin and Gaines 

2002; Brown and Vellend 2014; Nagamistu et al., 2015; Putnam and Reich 2016). 

We hypothesize that the demography at range limits will be constrained due to local 

adaptation within the distribution. Here, we investigate the local adaptation of sugar 

maple (Acer saccharum Marshall.) at, and beyond its current northem species range 

limit. Sugar maple provides an ideal candidate to investigate local adaptation in the 

establishment phase, as it maintains a wide geographie range throughout much of 

northeastem North America (Godman 1990) and has been shown to express quite 

high genetic diversity (Gunter et al., 2000). Although, sugar maple has been projected 

to rnigrate under climate change (Zhu et al., 2012; Boisvert-Marsh et al., 2014), 
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certain species-specific climatic constraints exist within its germination and 

establishment stages, such as seeds requiring a specifie stratification period to break 

dormancy (Solarik et al. , 2016). Further, the current northem range limit may also 

impose an increase in unfavourable conditions on a number of influential 

phenological processes associated with fecundity (i.e. fruit development, maturation, 

and quality) and slow growth in these cooler conditions (Morin and Chuine 2014; 

Reich et al., 20 15). 

We established a seed transplant experiment to investigate the potential influence 

local adaptation may play on early seedling establishment and survival ofsugar maple 

from seed. We make the following predictions: (i) southem seed provenances will be 

the most maladapted to the environrnental conditions occurring at and beyond the 

current northern range limit, as they are the furthest in proximity oftheir origins 

(provenance effect), (ii) early seedling establishment will be best within sites which 

meet the species specifie climatic requirements needed to ensure seed germination 

( climate effect) , and (iii) upon seedling establishment, local rnicrosite conditions 

more closely resembling those within the range limit will favour higher survival rates 

(microsite effect). Currently, we have very little empirical evidence on potentiallocal 

adaptation of seed germination and establishment in regards to the abiotic and bio tic 

environrnent, so we used a fully randomized factorial design, where we crossed 

climatic conditions, biotic environment, and seed provenance. We did this by 

collecting seed rrom 6 provenances representing the entire species range and seeded 

them to 4 sites located within the species limit, 4 sites at the northern range limit, and 

4 sites beyond the current species northem range limit. This design allowed us to 

examine if any potential local adaptation in seedling establishment and survival 

currently exists within the species range, while also making inferences into potential 

barriers for seedling establishment in new environments. To date, few studies have 

assessed local adaptation at the seed germination and establishment stages, which 



remains the lynch pin to long-term species migration success under climate change 

(Donohue et al., 2010) . 

2.3 Methods 

2.3.1 Study Area & Experimental Design 

55 

The study was carried out along the northem species range limit of sugar maple in 

Québec, Canada (Figure 2.1, Table 2.1 ). We selected sites based on three bioclimatic 

regions associated with the sugar maple species range limit : (i) temperate zone

(within range limit) , (ii) mixedwood/transition (at northern range limit), and (iii) 

boreal zone (beyond the northern range limit) . The temperate zone included sites that 

lay within the hardwood forest subzone consisting of the sugar maple-bittemut 

hickory (A.saccharum and Carya cordiformis (Wangenh.) K.Koch) , sugar maple

basswood (A .saccharum and Tilia Americana L.), and sugar maple-yellow birch 

(A .saccharum- Betula alleghaniensis Britton) bioclimatic domains. The mixedwood 

zone consisted of sites within the balsam frr-yellow birch (Abies balsamea (L.) Miller 

and B. alleghaniensis) bioclimatic domain, while sites within the boreal zone were 

part of the balsam frr-white birch domain (A . balsamea- Betula. Papyifera Marshall) 

(Saucier et al., 2003). Four sites within each of the above mentioned zones were 

selected from the permanent plot network RESEF (Le B.éseau d '"t_tude et de 

Surveillance des "t_cosystèmes Eorestiers Québécois or The Québec forest ecosystems 

research and monitoring network), which allowed us to choose sites based on 

comparable (between sites) upper mineral soil (0-15cm) exchangeable calcium 

concentrations; a well-known limiting factor to sugar maple regeneration and survival 

(Moore et al. , 2008; Bal et al. , 20 15). Al\ sites were undisturbed, uneven-aged stands, 
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ranging in elevation from 200 rn to 800 rn a.s.l. (See Périé and Ouimet (2003) for full 

RESEF site and climatic descriptions). 

65"W 

Ashùlf):muahuln • 

Figure 2.1. Approximate location of seed transplant sites used in the study, overlaid 

by the bioclimatic demains. 

Seeds were collected in the late fall of20 13 from six provenances throughout the 

sugar maple range (- 2, 160km), following a latitudinal gradient from south to north 

(Figure 2.2, Table 2.1 ). Following collection, seeds were air dried until the samaras 

(ftuiting body) became brittle, and then were placed in a mechanical tumbler to 

remove the wing portion fi-om the seed. Seeds were then passed through a feed sorter, 

where filled seeds are separated from unfilled seeds. To further ensure that we were 

transplanting viable seeds, we tested a sub-samp le of seeds from each provenance 



using x-rays to ensure viability was above 95% prior to transplanting the seeds at 

each field site. Seed lots (150 seeds/plot) were then weighted using an analytical 

balance in the laboratory to identify any potential differences in maternai effect 

caused by seed provenance. 

95"W 90'W as•w 80"W 75"W es-w eo-w 

SO"N 

4S'N ---' 

*Kentucky 

*Tennusee 

95' W 90"W ss·w eo·w 75"W 70"W 
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S' N 

O' N 

Figure 2.2 . Approximate location of seed provenances used in the study, overlaid by 

the sugar maple species distribution map (Little 1971 ). 

At each site, eighteen 1 m2 plots (6 seed provenances x 3 replicates) were randomly 

established in the late fall of2013 (Table 2.2). Seeding began in the late fall 

(approximately 1 month following natural seed dispersal) which provided two key 

benefits: (i) ensured no possibility of natural seeding from the overstorey canopy 
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falling after the plot was established (seed already in plots prior to plot installation 

were removed through light scarification), and (ii) seeds are exposed to the local 

overwintering and early spring stratification conditions (i.e. cool, moist conditions) 

unique to each site. Ali transplant plots were positioned at a distance of at !east 2: 2 rn 

from any overstorey trees to minimize the influence of the bole and shading. Seeds 

lots were then hand broadcasted evenly across each 1 m2 plot. When snow was 

already present at the time of seeding, it was removed, the plot was seeded, and theo 

the snow was redistributed over the seeds. W e installed 1 m2 metal cages ( 15 cm in 

height) over the plots to e1iminate the presence and impact of seed predation by 

granivores (i.e. , squirrels, voles, and mice) or browsing by deer. (See Photo in Annex 

B) We also installed in-situ HOBO Pendent ® data loggers to monitor ground leve! 

temperature and light conditions (December through to June); providing an accurate 

interpretation of the below canopy environment (De Frenne et al., 20 13). In total, 32 

400 seeds were distributed over 216 transplant plots at twelve transplant sites. 



Table 2. 1. Approximate geographicallocation (decimal degrees) and elevation 

(meters) of each seed provenance and transplant sites used in the study. 

So urce' Zone Location Latitude Longitude Elevation(m) 

Tennessee . USA 35. 78° -83 .67° 365 
Kentuck y, USA 38 .26° -84.95 ° 262 

Seed Pennsy iYa nia, USA -ll.l30 - 77.62° 426 
So urce Sherbrooke , Canada 45. -l9° - 72 .17° 30 1 

Mo ntmag ny, Ca nada 46 .95 ° -70.46° 327 

Ri,·ière-du-Loup, Canada 47 .73 ° -69.48° 14 7 

Borea l Lac LaFlamme 47.32° - 7 1.1 10 790 
Parent 47 .90° -74 .63° 404 
Micoua 49.75° -68 .69° 2 12 

Ashuapmushuan 48. 8 1° -72 .77° 277 

Mixed \Yood Saint Marcellin 48. 30° -6 8. 29° 319 
I ran ition Rivière-Eternité 48.23 ° -70 .35° 39 1 

Ouimet 48.28° -68 .73 ° 335 
Au clair 47 .75° -68 .08° 253 

Tempera te Dorset -l5. 82° - 72.5 1° 536 
Knowlton 45. 19° -72 .50° 330 

Ferme Neuve 46.77° - 75.46° 316 
Sa int-Faustin -l6.0) 0 -7-l .47° 432 

2.3.2 Data Collection 
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We counted the number of l st year seedlings within each of the plots in late spring

early summer of 2014 (Table 2.2). A plot leve! assessment was a Iso conducted, where 

substrate co vera ge (%) of each of the fo llowing variables were ta ken: ( i) moss co ver, 

(ii) leaf litter, (iii) conifer needles, (iv) rock, (v) decayed logs (Decay classes: 4-7 , 

Mills and Macdonald 2004); (vi) solid wood (Decay classes: l-3 , Mills and 

Macdonald 2004) and (vii) exposed mineral soi!. In addition, an organic soil sample 

from the center of each ofthe plots was collected to measure forest floor pH (2.00 g 

ofsoil : 20 ml of distilled water (1 : 1 0) ; Carter and Gregorich 2007). The following 
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year, we aga in re-measured the presence of transplanted seedlings (2"d year seedlings) 

in July 2015 (Table 2.2) . 

Table 2.2. Seeding and field measurement dates by transplant site. 

1'1 Year 2"d Year 
Zone Site Seeded Mea urement tvlea urement 

Lac Laflamme 27-28/111 13 23/06/20 14 11 /07/2015 
Boreal Parent 09112/201 3 16/06/20 14 05/07/20 15 

Micoua 01112/2013 24/06/20 14 13/07/2015 

Ashuapmu Iman 30!! 1/2013 2-1/0612014 12/07/2015 

Saint Marcellin 19/12/20 13 13/06/2014 13/07/2015 
lixed Rivière-Etemité 29d 1/2013 25/06/20 1-1 11 /07/20 15 

Ouimet 17 12/2013 13/06/20 1-1 13/07/2015 

Au clair 18112/20 13 13/06/20 14 14/07 '20 15 

Dorset 0512/2013 10/06/201-1 03/07/2015 
Temperate Knowlton 06 12/2 013 10/06/20 14 03/07/2015 

Fenne Neuve 0811 2/2013 16/06/20 1-1 06/07/2015 

Saint-Faustin 07 12/2013 17/06/20 14 0510712015 

2.3.3 Data Analysis 

An ana1ysis of the macroscale effects of each bioclimatic zone (temperate, 

mixedwood, and boreal) provided insight into the large scale influences occurring on 

recruitment. To do so, we used a mixed mode! approach to investigate the influence 

of each zone and seed provenance on l st and 2"d year seedlings, and seedling survival 

(%difference between 1 st and 2"d year). The zone (n=3) and seed provenance (n=6) 

were treated as fixed factors, while site (n=l2) was treated as a random factor 
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replicate within canopy composition. Ali data were averaged to these main effects 

prior to analysis. A square root transform was performed when residuals did not meet 

the assumptions ofnormality and homogeneity of variance. We also conducted a one

way ANOV A on seed lot weights to infer any potential differences in seed 

provenance. The Tukey-Kramer' s HSD test (a =0.05) was used for ail post-hoc 

comparisons of means. Ail data were analyzed using the mixed procedure (proc 

mixed) in SAS version 9.2 (SAS Institute Inc. 20 16). 

Additionally, we also conducted a microscale analysis to evaluate the potential 

influence ofrnicrosite on recruitment at the plot leve! within each ofthe specifie 

zones. To do so, we used Multiple Regression Tree (MRT) analysis, which is a well

known procedure to make inferences on the contributing factors in natural 

regeneration surveys when multiple contributing factors are being considered 

simultaneously at different scales (De 'ath et al. , 2002; Solarik et al. , 201 0). In short, 

MRT analysis produces dichotomies in a categorised manner, where the independent 

variables that are more similar are clustered together, while those that are different are 

split apart. Here, we performed three MRT analyses, one for each zone; temperate, 

mixedwood, and boreal. The multiple dependent variables considered in these 

analyses were 1 s i year seedlings, 2"d year seedlings, and seedling survival, while the 

exp lanatory variables included were plot leve! substrate coverage (%): moss, leaf, 

needle, rock, decayed wood, solid wood, exposed sail, and soi! pH. Additionally, we 

included the following site leve) climate variables: (i) mean temperature (ii) number 

of stratification da ys: da ys in earl y spring (March to May) with a mean daily 

temperature between -1 oc and 7°C; determined to be the critical temperature range 

required to break seed dormancy in sugar maple (Solarik et al. , 20 16), (iii) number of 

warm days : days with a mean temperature of >7°C (between March 151 and May 31 s1
) , 

(iv) shift ratio: ratio of stratification days to warm days, and finally, (v) light days: the 

number of da ys of recorded light. A Euclidian distance measure was used to 
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determine dissimilarities within each MRT. The final tree selection was made using 

the interactive "pick" option by selecting the 1-SE (standard error) rule (Solarik et al. 

201 0) . To further ensure we selected the correct regression tree, 5000 cross validation 

runs were performed. Al! data were analyzed using R version 3.2 (R Development 

Core Team 20 16) and the "mvpart" library version 1.6-0 (Therneau and Atk inson 

2013). 

2.4 Results 

A total of2557 (7.8%) seedlings established the 1st year, ofwhich 631 survived 

through to the second year (1.95%), resulting in a seedling survival rate of24.7%. 

Transplant zone was found to only influence 1 st year seedlings (p=0.0305) (Table 2.3 , 

Figure 2.3). Although, sites within the temperate zone on average had nearly 3x more 

1 st year seedlings ( 14.0%) when compared with other zones (mixedwood: 4. 7% and 

boreal: 5.0%), it had comparable survival rates (Figure 2.3). No significant 

differences were detected among 2"d year seedlings (p=0.3517) and survival (p

value=0.3982) among ali three zones ; however, survival did follow a noticeable 

declining trend (temperate~mixedwood~boreal ) (Figure 2.3). Seed provenance 

significantly influenced both 1 st (p=0.0065) and 2"d year seedlings (p=0.0396); 

however, again no relationship was found with survival (p=0.2939) (Table 2.3 , Figure 

2.4A). Interestingly, we did fmd that there was a trend for increased 1 st and 2"d year 

seedling presence as seed originating further northward had generally increased 

establishment rates, but again we found no influence statistically on survival (Figure 

2.4A). 
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Table 2.3. Analysis of variance of 1 st year, 2"d year establishment, and survival rate 

for sugar maple seedlings. Significant values in bold using a Tukey-Kramer's test (a 

< 0.05) . 

Sources ofVariation dF 1st F 2nd F Survival* F 
Year* Value Year* Value Value 

Zone 2 0.0305 4.28 0.3517 1.18 0.3982 1.02 
(B oreai!Mixedwood/T emperate) 

Seed Origin 5 0.0065 3.74 0.0396 2.58 0.2939 1.27 
Canopy x Origin 10 0.1208 1.66 0.5 181 0.93 0.1717 1.50 
Err or 144 
Total 215 

*Represents data that were square root transformed 
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Figure 2.3. Sugar maple seedling presence and survival by bioclimatic zone. Bars 

with the same letter were not significantly different. Bars with the same letter were 

not statistically different (Tukey's HSD Test, a= 0.05). 
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Figure 2.4. (A) Percent of seedlings per plot for 1 stand 2"d year seedling presence 

(%), and survival (%) by seed provenance. Bars with the same letter were not 

significantly different (Tukey's HSD test, a=0.05). (B) Seed weight (150 seeds/g per 

plot) by seed origin. Bars with the same letter were not statistically different (Tukey's 

HSD Test, a = 0.05). 
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2.4. 1 MRT 

The boreal zone (beyond range) MRT produced a 6-leaftree (leafrefers to terminal 

points within the analysis) that explained 58.7% ofthe total variance within the 

analysis (Figure 2.5). Forest floor pH explained the most variance (21.1% of total tree 

variance) of the five explanative factors within the boreal zone. Plots with a soi! pH~ 

4.61 (n= 13) resu1ted in more than twice the rate of 1 st year seedlings and nearly six 

fold increase in survival after 2 years when compared with more acidic plots 

(pH<4.61 , n=59) (Figure 2.5). The second most influential factor was the number of 

days ofrecorded light days (12.7% variance explained), where more basic plots 

(pH~4.6l) receiving more days of light (~52 , n=5) improved bath l st year: +6.9% and 

2"d year seedlings: +6.8%, and survival (+25.4%) when compared with plots 

receiving fewer days oflight (<52, n=8) . Needle coverage explained 9.7% ofthe total 

variance, where Iower needle caver (<2.5%, n=ll) within the acidic plots improved 

the presence of l stand 2"d year seedlings (six and twelve times respectively), white 

the survival rate quadrupled when compared with plots maintaining higher needle 

coverage (~2.5%, n=48) . 
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Seed provenance (9 .7% oftotal variance) provided the next split, where plots seeded 

with southem provenances (Kentucky and Pennsylvania, n=7) experienced reduced 

the presence of seedlings ( 151 year: -19.6% and 2nd year: -9 .9%) and no survival after 

2 years. On the other hand, northem seed provenances (Sherbrooke, Montmagny, and 

Rivière-du-Loup, n=4) had a survival rate of37.3%. Decayed wood cover explained 

the !east amount ofvariance within the boreal zone (5.5%), however, plots with more 

decayed wood (2: 12.5%, n=5) did improve 151 year establishment by 10.4% and 

seedling survival by 32.2% compared to plots with less (< 12.5%, n=5) (Figure 2.5). 

At the northem range li mit ( mixedwood zone) the number of stratification da ys 

(recall: number of days with an average daily temperature between -1 oc and 7°C) 

explained most ofthe variance within (16.5% ofthe total57.7%) the 7 leafMRT 

(Figure 2.6). Seeds exposed to fewer than 88 .5 stratification days (n= l8) had an 

improved presence ofseedlings (! 51 year: %16.4% and 2nd year: +4.2%) and survival 

(20.5%) when compared with sites that had a more prolonged, cooler spring (Table 

2.4) . Seed provenance was the second most influential factor (14.8%), where seed 

from Rivière-du-Loup (northern most provenance) had irnproved seedling presence 

( 1 st year: +3.6% and 2nd year: 2.8%) and seedling survival (38 .9%) compared to more 

southem provenances (Figure 2.6) . Establishment and survival ofRivière-du-Loup 

seeds were surprisingly improved with more needle coverage (2:20.0%), where this 

split explained 11.4% oftotal variance. The final two factors influencing seedling 

presence and survival were soi! pH and the amount of leaf litter, where ali three of the 

remaining splits each variables explained 5.0% oftotal variance; seedling presence 

and survival improved with increases in both leaf cover and soi! pH (Figure 2.6). 
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Seedling presence and survival within the temperate zone (within range) was 

described best by a 6 leafMRT that explained 36.6% of the total variance within 

these plots (Figure 2.7). Shift ratio ; the ratio of stratification days to warrn days, was 

deterrnined to be the most influential factor (explained 12.7% oftotal variance). A 

larger ratio nearly doubled the rate of first year seedlings, wh ile survival was 

improved seven-fold (24.7% vs 3.9%). Decayed wood was the second most 

influential factor (6.9%), where an increase in coverage within the recruitment plot 

(27.5%) irnproved seedling presence (1 st: +9.1% and 2nd: 5.2%) and survival 

(+16.8%). N011hem seed provenances (Sherbrooke northward) once again resulted in 

better survival over those from more southern provenances within plots, where more 

than 3x the survival occurred (52.6% vs 15 .3%, Figure 2.7) . The soil pH split 

explained 6.2% of total variance within the biome, where more acidic plots 

(pH<4.03) had 5x fewer seedlings (8.0% vs 41.2%), and ~ the survival rate of more 

plots possessing more basic soils. The final explanatory variable; average seed 

weight, explained the !east amount of variance (3.9%), where plots seeded with 

lighter seeds (<O.l03g) produced a third ofthe seedlings than those seeded with 

heavier seeds (20. 1 03 g) (Figure 2. 7) . 



"
\-

If
 

·h
m

 R
3t

)()
,. 

1.
!1

 
l 

S
lu

fl 
R1

11
10

?
 

1 
:!1

 

C
p
-
0
1
~
-

u
a<

. 
• 

3
1

 ..
. 

• 
1
9
~
,
 

Il
 

12
 

[r
r

o
o.

 0
6

U
 

C
\'

 (
rm

r:
 1

 O
S 

~
[
·
0
 
p

 

~
~
 

Yc
.w

 S
c:

<.
-d

t.
'I

Ç~
 

• 
7
n
d
Y
t
.
d
l
~
l
C
J
~
 

·
~
l
f
f
l
~
 

D
n:

a)
<d

 W
oo

d
 "

" 
• 

u
0 

D
ec

ay
td

 W
oo

d
 ~
 
-

~
0
o 

1 ~
 
c•

, 
• 

-~ 
o-

1 

• 
!.:

··
· 

!'\
•

!l
 

S
n"

d 
\\

'd
gl

u 
~-

O.
 I
OJ
~ 

"<
-tr

l 
\\

 r
at

hl
 z

_ 
o

 1
03

~ 

!(
 

••
 

• 
~ 

6'
• 

• 
1
~
 
u

, 
11

-
.I

J 

o.
...

 
• 

6 
,;

•,
 

• 
15

 $
•, 

N
 

1 

C
p

•
00

6'
il 

l'
s-

. 
I

J
I
't

 
. .:..~-

.. 
' 

.. 
T~
IU
ie
::
.)
«,
 K

!!u
f\J

d.'
}'.

 
~
l
o
u
u
n
a
g
~
.
 &

 
&

 P
cw

l)
)l

\a
w

a 
R

.J
\c

iM
u

·L
ou

JJ
 

C
p

=
0

0
6

9
 

~
 

l 
. ·:r.

: 
S

où
 p

H
 <

 
1 

0 
'io

tl 
p

H
 ~
 -

1 
0.
~ 

1 
:
:
 ;
•
,
 

ct:
 1

 
""

 
1 

. 
'~~:

 
=

-
• 

0 
.•

• 

• 
( 

6'
• 

"
l'

l'•
 O

...
 

t~
·

o
 

.1
11

'•
 

• 
s s

• •
 

• 
:o

 :•
 • 

71
 

u:
···

 

F
ig

ur
e 

2.
7.

 M
ul

ti
va

ri
at

e 
R

eg
re

ss
io

n 
T

re
e 

an
al

ys
is

 o
ft

em
p

er
at

e 
si

te
s 

(w
it

hi
n 

ra
ng

e 
li

m
it

) 
fo

r 
ls

t,
 2

nd
 s

ec
on

d 
ye

ar
 s

ee
dl

in
g 

p
re

se
n

ce
(%

),
 a

nd
 s

ur
vi

va
l 

(%
) 

pe
r 

1m
2 

pl
ot

. T
hi

s 
tr

ee
 e

xp
la

in
ed

 3
9

.3
%

 o
ft

h
e 

to
ta

l 
va

ri
an

ce
, a

nd
 t

he
 v

er
ti

ca
l 

de
pt

h 
o

fe
ac

h
 

sp
li

t 
is

 p
ro

po
rt

io
na

l 
to

 t
he

 v
ar

ia
ti

on
 e

xp
la

in
ed

, 
w

he
re

 t
he

 c
om

pl
ex

it
y 

pa
ra

m
et

er
 (

C
p)

 r
ef

er
s 

to
 t

he
 a

m
ou

nt
 o

f 
va

ri
an

ce
 

ex
pl

ai
ne

d 
by

 t
he

 i
nd

iv
id

ua
l 

sp
li

t. 



72 

2.5 Discussion 

Our study shows evidence that successful seed germination, seedling establishment 

and early survival is constrained due to local adaptation. We found that seeds 

originating closer to the range margins were currently better able to produce seedlings 

at higher rates overall than those from either the central and southem portions of the 

species range ; likely due to their closer original proxirnity to conditions they were 

transplanted to (Putnam and Reich 20 16 ; Anderson 20 16). In addition, we show that 

the strength and interplay of climatic and microsite play a significant rote in sugar 

maple recruitment; however, their relative contribution are site and region specifie 

(Figures 2.5-2 .7). 

2.5. 1 Seed Provenance 

Results from our study highlight the impottance and direct link between seed 

provenance and the likelihood ofsuccessful seedl ings establishment and survival. 

Here we found that seed originating from the most northem portions of the species 

range currently led to the best recruitment. These fmdings highlight local adaptation 

at these key early stages (Figure 2.4) and agree with our frrst prediction. Our results 

do not fully support the centre-periphery hypothesis: genetic variation and 

demographie performance of a species decrease from the center to the periphery of its 

range, as we fi nd evidence th at seeds from the norther portions of the range outperformed 

the central provenances. Parent trees living in these harsher fringe conditions at the 

range periphery would lead to a reduced and/or poorer quality seed crop (i.e., lower 

viability), which would subsequently lead to poorer recruitment rates (Johnstone et 
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al., 2009; Walck et al., 2011; Castanha 2012) . Surprisingly this was not the case in 

our study. Populations at the range margins are exposed to higher environmental 

variability (i.e., increased competition, colder climate) compared to their central 

range, which would lead to seeds that are better adapted to a wide range of 

conditions, including those northem conditions found beyond their current range 

(Cieavitt et al. , 2011; Anderson 2016). While we could not differentiate the genetic 

and phenotypic effect of seed provenance, we were able to differentiate a few clear 

effects. First, northem provenances had on average heavier seeds (Figure 2.4B) that 

improved the presence of seedlings. A heavier or larger seed size will pro vide greater 

energy reserves to a new germinate and improve its survival through: (i) a longer 

radical that can penetrate the forest floor more successfully, (ii) establish a larger 

seedling, (iii) pro vide great er initial resources for leaf formation, and (iv) delay the 

onset of carbon starvation in poorly lit understories (Walters and Reich 2000). A 

lighter seed at the southem portion of the range (which we report) has been 

previously reported in other sugar maple studies (Clark et al., 2014), and has been 

associated with the delay in fruit maturation caused by late flowering in these warmer 

environments (Morin and Chuine 2014). Poorer recruitment rates for southem 

provenances could also highlight the inability of the se warmer conditioned seeds to 

germinate in cooler climates (Solarik et al. , 2016) . 

If the climate warms faster than the species ability to adapt, seed from the northern 

range will become maladapted and lead to significant migration lag (Solarik et al. , 

20 16). As a result, southem seed provenances would then pro vide the best 

opportunity for improved recruitment at the future warmer northern range as they are 

currently better adapted to these conditions where we show sorne evidence of this 

within our range sites (Ngarnitsu et al., 2015; Aitken et al. , 2016; Solarik et al., 

2016) . 
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Table 2.4. Seed transplant site spec ifie climatic and light variables. 

Total 
OveraU 

Stratification 'iegalive 
ligbt ~leasurements 

~lean Sbill RJtio 
Zone Site Da~-s 

Temperature 
Da~·s Te.mperature 'iumber Day of 

~leasured 
('C) 

(- t•c to ;·c) Da ys ofDays First light 

Lac Laflamme 204 -Q.02 50 3A6 Ill 29 08/05/2013 

Boreal 
Parent 211 0.88 ~ 6 2.20 100 56 2 1 /0~/2013 

t.ficoua 219 uo ~0 2.8i 108 46 09/0512013 
Ashuapmushuan 219 1.77 ~ 5 2.05 107 58 29/~/2013 

Saint ~1arcellin 211 1.56 95 3.38 96 42 29/04/2013 
Mi~edwood/ Rivière-Eternité 219 1.90 82 U l lOi 39 10/05/2013 

Transition Ouimet 211 2.08 101 Ul 106 39 8105/2013 

Au clair 211 2.55 68 1.96 105 58 11/04/2013 
Dorset 204 3.15 101 2.0i 63 51 2010412013 

Knowhon 204 3A5 i9 1.11 75 63 09/04/2013 
Temperate 

Ferme Neuve 211 2.77 51 1.30 97 72 07/04/2013 
Saint-Faustiu 211 3.09 51 1.20 101 70 09/0412013 

2.5.2 Climate 

We found that climate, more spec ifically the timing of cool and warm temperatures, 

had a strong influence on sugar maple recruitment. The climatic influence was 

particularly apparent within the temperate and mixedwood zones (Figures 2.6 and 

2. 7). Our results support our second prediction ; where sites matching sugar maple 's 

stratification requirements led to the irnproved presence and survival of seedlings. 

Although our boreal sites did have lower overall mean temperatures (Table 2.4), 

mean temperature was found to be a poor predictor of seedling recruitment sucees s. 

Local climate has been historically found to have a significant impact on ali facets of 

plant species phenology, !ife history traits, and subsequent range (Turesson 1925; 

Morin and Chuine 20 14), and our findings support this at the establishment phase. 

The number of strat ification da ys with in the mixedwood zone highlights sugar 

maple 's adaptation to the timing of temperature, where sites not meeting these 

requirements will cause significant dec lines in seed germination (Solarik et al., 20 16). 
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The opposite could also be true however, where a surplus ofwarmer days coupled 

with a lack of precipitation has been shown to reduce recruitment at sugar maple's 

southern range (Clark et al., 20 14). We stress that the timing of certain temperatures, 

particularly in early spring when seeds are exposed to rapid fluctuations in 

temperature are more important than the average ; highlighted by the effect ofshift 

ratio (stratification days : warm days) in our temperate transplant sites (Figures 2.7 

and 2.8). 

Sites maintaining lower shi ft ratios had the highest presence of seedlings and 

survival. By first satisfying the stratification requirements to break seed dormancy, 

and then shift to warmer conditions that lead to snow melt and the commencement of 

seedling establishment (photosynthesis and growth) (Table 2.4, Figure 2.8) . On the 

contrary, higher shift ratios tended to occur in cooler sites, where snow remained on 

sites longer, leading to a prolonged stratification period (Table 2.4) . Snow pact when 

present (which occurred at ali of our sites) provides an ideal stratification 

environrnent (approxirnately -1 °C), and can also shelter seed and seedlings from 

potentially harmful earl y spring frost damage (Walck et al. , 20 Il ; De Frenne et al., 

2013; Morin and Chuine 2014) and herbivory/predation (Gardescu 2003). Ifsnow 

melt is delayed, it could inhibit new germinates from establishing. Overall, we found 

an inter-site difference of34 da ys for the flrst day of recorded light (i.e. snow melt, 

Table 2.4) highlights a wide variation in site conditions within this study, which could 

be minimized under warmer, earlier springs as predicted in the future (Drescher and 

Thomas 20 13; Priee et al. , 20 13). A warmer spring would cause earlier snow melt 

and accelerate water runoff: exposing seeds to a much narrower stratification window 

and reduce the likelihood of successful germination. Rapid warming, particularly in 

the spring at the range limit; where variability in the environment is highest (Sexton 

et al., 2009) can further contribute to species maladaptation and increase the 

likelihood of migration lag. A meta-analysis (74 studies) performed by Hereford 
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(2009) looked at local adaptation and fitness trade-offs, suggests that while 

populations are often locally adapted, stochastic processes (genetic drift) can limit 

efficacy of divergent se lections of certain favourable traits . These fmdings suggest the 

ability of a species to become locally adapted to future conditions could become 

reduced as the variabi lity surrounding temperature and precipitation events in the 

future increases (Aitken et al., 20 13; TPCC 20 13). Aubin et al., (20 16) rein forces this 

concem, where mean annual temperatures increase will only have a minimal impact 

on trees, chilling requirements, heat sum thresholds) shou ld have a more profound 

impact on the ability of a species to adapt to future environmental conditions. 
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2.5.3 Substrate 

Our results conftrm that sugar maple exhibits a considerable preference for certain 

substrates over others, rein forcing our prediction of a microsite effect on seedling 

presence. Beyond the current northern temperate range limit (boreal), soi! pH was the 

most influential factor, and to a lesser extent within other zones. Regardless of site, 

seedlings were consistently found in higher numbers on soi! within a higher pH 

(Figures 2.5-2. 7). Typically, acidic soils lead to high concentrations of soluble 

aluminum, iron, and manganese, which are ali weil known to inhibit plant growth, 

and particularly detrimental for seedlings (Bal et al., 2015; Collin 2017). Even though 

sugar maple seedlings were capable of establishing on acidic soils (pH<4.0); 76% of 

our recruitment plots had soit pH <5.0, it establishes and grows best on more basic 

soils (pH= 5.5-7.3, Godman et al., 1990). Albeit acidic soils can reduce sugar 

maple 's likelihood ofestablishing, it does not completely inhibit it. We speculate that 

this is likely due to the presence of other more beneficiai nutrients present (i.e., 

magnesium) within the soil and/or the influence of other substrate factors helping 

reduce the influence of pH (Coughlan et al. , 2000; St.Clair et al. , 2008) . 

Sugar maple seedling presence improved when decayed wood was present (Figures 

2.5 and 2.7). Decayed wood is generally considered as a safe site for seedling 

establishment (Harmon et al., 1986) as it typically possess less seed pathogens over 

forest tloor soi) (O'Hanlon-Manners and Kotanen, 2004), absence oflocalized 

competition, elevated position, irnproved moisture retention, temperature, and can 

even combat soi! erosion (DeLong et al. , 1997; Cornett et al. , 2000; McGee et al. , 

200 l ). The presence of decayed wood also improves nutrient uptake (Simard et al., 

2003) and potential presence of beneficiai mycorrhizas, which could improve 

marginal conditions in the boreal understorey. Although we did not identify decayed 
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wood by species, which improves conspecific recruitment (Marx and Walters 2008; 

Lambert et al. , 20 15), seedling establishment was improved regardless in its presence. 

We generally found that an increase in needle cover within the plots inhibited the 

establishment and survival of sugar maple. The presence of an abundant needle layer 

on the forest floor has been shown to influence the immobilization of nutrients (Zak 

et al. 1999), which has been shown to greatly influence the health and growth of 

sugar maple seedlings (St. Clair et al., 2008; Collin et al., 20 17). Leaf litter, although 

a weak predictor (5.0% of variance explained) and only significant within the 

mixedwood zone. Leaf litter has been suggested to be a generally favourable substrate 

for sugar maple to establish, as it maintains a radicle strong enough to pierce through 

dense leaf coverage if necessary and could pro vide a competitive ad van tage over 

smaller seeded tree species hoping to establish (McGee 2001 ; Caspersen and 

Sprunoff 2005) . 

Tncreasing empirical evidence suggests that edaphic factors may even outweigh the 

importance of climatic factors as the primary inhibitor of tempera te tree migration 

(Brown and Vellend 2014 ). lt is evident that soi! conditions play a critical component 

in ensuring seedling establishment and survival, however, the relative influence 

becomes increasingly important as the likelihood of encountering more nutrient poor 

soils increases northward into the boreal regions (Graignic et al., 20 14; Brown and 

Velland 2014; Collin 2017). Significant migration Lag could occur iftemperate tree 

species are maladapted to establish upon boreal microsites - even if the climate 

becomes more favourable under climate change. Certain plant populations have been 

shawn to adapt to specifie soi! types (Wright et al., 2006) or local mycorrhizal 

community (Kranabetter et al. , 20 12), however, in the absence ofthese conditions 

further lag will occur. Unlike climate, the turnover rate of sail conditions should be 

expected to occur over much longer time scales (Aitken et al., 20 13). 



79 

2.5.4 Light 

The number of da ys of recorded light was an important predictor of sugar maple 

recruitment within the boreal biome. Plots receiving at !east 46 da ys of recorded light 

had an improved seedling presence by 6.6%. Receiving adequate light in the 

understorey has long been understood as an important hurdle to be overcome for 

seedlings (Walters and Reich 1996; Schreeg et al. , 2005). Although we did not 

measure photosynthetic active radiation (PAR) , and are unable to translate the quality 

of light received by seedlings, we were able to state when seedlings were frrst 

exposed to light across sites. Sites with delayed snow melt (i .e., fewer recorded days 

of light) delay the onset of photosynthesis, while seedlings at warmer sites are forced 

to compete earlier for light and resources. Albeit sugar maple is a highly shade 

tolerant tree species, understorey canopy ligbt conditions must reach a certain 

threshold (typically + 10 %of full sunlight) to ensure seedling survival (Canham 

1988; Leithead et al. , 201 0) . T n the absence of a forest canopy disturbance or gap, 

light thresholds within evergreen understories willlikely need to be bigber 

considering the lack of a photosynthetic window in the early spring and further 

contribute to the migration lag of tempera te species. 

2.5.5 Other Potential Constraining Factors 

Often ignored in the context of species migrating northward in latitude is photoperiod 

(Way and Montgomery 20 14). Many plant and animal species have adapted to 

photoperiod, where even the rate of carbon assimilation has been shawn to change 

within the same species (Goldblum et al. , 2012). White photoperiod is stable, and 
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declines with increasing latitude, under climate warming, species migrating 

northward could face novel combinations of light, temperature, and moisture due to a 

northward shifts and further contribute to migration !ag. Issues may arise as responses 

to photoperiod are mjsinterpreted as thermal responses (Soolanayakanahally et al., 

2013), where seasonal triggers respond to the length of day: growth cessation, 

dormancy, and flowering time, which ultimately could influence the recruitment of 

invading species (Laube et al. , 2014). 

Dispersal also remains another signiftcant factor contributing to species migration and 

has long been hypothesized as being the primary inhibitor to species invasion; highly 

localized and generally falls within relatively short distances (<20.0m) ofthe parent 

tree (Greene et al., 2004). A lack of long distance seed dispersal events (Clark et al., 

1998) combined with high inter-annual variability in seed crop; sugar maple masts 

every 3-7 years (Godman 1990), could cause severe migration 1ag strictly from a seed 

production and dispersal perspective at its northern range limit (Capsersen and 

Sprunoff2005 ; Polechova et al., 2009; Graignic et al. , 2014). 

Predation may also play a signiftcant rote in slowing range shifts. Although we 

controlled seed predation within this study through the use of cages (See Photo 

Annex B), we outline the important rote that biotic agents ; predation, herbivory, 

disease, can have on the spatial distribution and recruitment dynamics of seedlings 

(e.g. Hsia and Francl 2009; Speed et al., 201 0; Walters et al., 20 16). Wh ile we did 

outline the importance ofseed size (Walters and Reich 2000) , larger seeds willlikely 

be exposed to increased risk of predation outside its range, as tempera te tree seeds are 

much more readily distinguishable than their often smaller boreal counterparts 

(Hewitt 1998), even though they will likely be much more Iimited in abundance 

(Kellman 2004; Brown and Vellend 2014) . Naturally, predation is highly variable 

between micro sites (Whelan et al., 1991 ), but the threat of further reductions in seed 
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abundance could prove costly, especially when considering the inter-annual 

variability ofseed production (Gaston 2009; Walck et al. , 2011) and poor early 

establishment rates (Figures 2.3 and 2.4) . 

2.5.6 Future Species Ranges 
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White the results outlined in this study only refer to a single species, the findings 

provide considerable insight into plausible bottlenecks when considering the local 

adaptation of earl y seedlings in the context of species migration. We highlight that 

individually and collectively the contribution of maternai, climatic, and microsite 

greatly influence early seedling recruitment, however, their relative importance is site 

dependent. 

Range shifts of hundreds of kilometers are required for temperate trees if they are to 

match the ir optimal climatic conditions of the future (McKenney et al. , 2011 ). For 

'example, Boisvert-Marsh et al., (20 14) point to a rate of approxirnately 4. 9 krn/year 

for sugar maple under current and projected climate scenarios for 2050 in arder to 

maintain its climatic niche. However, for this to occur in the most optimistic of 

scenarios, a number ofrecruitment bottlenecks must fust be overcome. First, climate 

must be favourable enough for parent trees at the current range limit to be able to 

produce a sizeable seed crop, which then need to be dispersed in large quantities at 

long distances (Clark et al. , 1998). Second, the new local climate where the seed falls 

must favour any species-specific climatic requirements needed to ensure subsequent 

seed germination. Assuming the first two steps are satisfied, seedlings must then 

establish on a favourabl e substrate, white sirnultaneously overcorning any biotic 

pressures already present in the environment. Finally, the newly established seedling 
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must then display enough phenotypic plasticity to withstand the novel conditions 

associated with resource uptake (i.e. water, light, nutrients) until it reaches 

reproductive maturity. Essentially, these five bottlenecks must ali be recurrent1y 

overcome at considerable rates over extended periods oftime to ensure a spec ies 

ability to migrate at the range limit to maintain its future climatic niche. 

Invading species willlikely need to either outcompete the current species already 

established or delay migration until they senesce prior to detecting changes occurring 

at the adult/canopy stage (Hart et al., 2014). Like others (Woodall et al., 2009; Zhu et 

al., 2012 ; Sittaro et al. , 2017), analyzing the seedling and sapling size classes 

particularly within the range margins can provide valuable insight into the current 

range expansion/contraction (Sexton et al. , 2009) . Tree migration rates could also be 

artificially sped up with implementation ofvarious forest management schemes, 

where the removal of native northern boreal trees in favour of planting/seeding 

temperate tree species beyond the ir current limit (Leithhead et al., 20 l 0). Further, 

natura1 disturbances cou1d a1so faci 1itate temperate species migration as tire and 

insect outbreaks could open up canopy large gaps in established forests that would 

favour recruitment of invading species loo king to move beyo nd their current range 

(Landhausseretal., 2010; Zhang etal., 2014; Willisetal., 2015; Walters etal, 2016) . 

However, our results suggest that transplanting seed or seedlings to colder climates 

may inhibit long term surviva1, where mismatches in climate could cause deleterious 

impacts to key !ife stages (seed germination, budburst, flowering, pollen 

deve1opment, and leaf unfolding) (Morin and Chi une 20 14; Laube et al., 20 14). 

Ultimately, our study reinforces that sugar maple migration will be constrained due to 

its local adaptation at its recruitment stage to conditions within its current species 

range. 
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3.1 Abstract 

Temperate tree species are expected to expand their distribution into the boreal forest 

in response to climate change. However, it is becoming increasingly clear that many 

species will experience significant setbacks in their migration due to a series of 

unfavourable conditions impacting their recruitment success, and thus their ability to 

colon ize new locations. We quantify the relative influence of a series of factors 

important for tree seedling recruitment at range margins : dispersal, substrate 

favourability, and the influence of the local canopy neighborhood. We hypothesized 

that boreal trees are responsible for priority effects that influence the establishment of 

temperate tree species seedlings. To do so, we analyzed two recruitment stages (first 

year seedlings and older seedlings) for seven tree species; Abies balsamea (ABBA), 

Acer rubrum (ACRU), Acer saccharum (ACSA), Betula papyrifera (BEPA), Betula 

alleghaniensis (BEAL), Populus tremuloides (POTR), and Fagus grandifolia (FAGR) 

commonly found within the temperate-boreal ecotone forests of northeastem North 

America. Overall, we found that boreal canopy trees influence the distribution of 

substrates, more specifically the occurrence of needle co ver and decayed wood in 

recruitment plots. This association between canopy and substrate led to highly 

unfavourable substrates that affected the seed ling densities ofall temperate tree 

species. ln addition, we found that seedling dispersion was highly localized, where 

mean dispersal distance of ali trees occurred in close proximity of parent trees. 

Ultimately, we found evidence that priority effects imposed by resident boreal trees 

are magnified as a result ofunfavourable substrates and limited MDD (mean dispersal 

distance) oftrees within these ecosystems, which together promise to cause 

significant lags in temperate tree species migration into the boreal forest in the future . 

Key words: climate change, species range, migration, priority effects, transition 
zone, temperate forest, boreal forest, seedling recruitment. 
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3.2 Introduction 

Climate change has already begun to force many plant species to shift their 

geographie distribution (Beckage et al., 2008; Jump et al., 2012; Boisvert-Marsh et 

al., 2014; Kroiss and HilleRisLambers 2015) . As a result, novel community and 

species interactions should be expected with species colonization and extinction 

(Williams et al., 2004; Woodall et al., 2013). The rate and magnitude ofthe projected 

changes will exceed the adaptive capacity of certain species (Kawecki and Ebert 

2004; !verson et al., 2008; Sexton et al., 2009; Duputié et al., 20 15; Aubin et al., 

20 16). Species lacking the ability to disperse fast enough and/or the plasticity to 

maintain their fitness under climate change will lag behind their optimal distribution, 

which could lead to significant declines in their abundance and promote extinctions 

(Aitken et al., 2008; Woodall et al., 2013; Renwick and Rocca 2015; Solarik et al., 

2016; Anderson 2016). 

Vulnerability to rapid changes in environmental conditions are particularly worrisome 

for trees because they are sessile organisms, long lived, slow to reach reproductive 

maturity, and typically have limited seed dispersal (Petit and Hampe 2006; Lenoir 

and Svenning 2013; but see Clark et al., 1998). Theory predicts that range expans ion 

rates should scale with the mean dispersal distance (MDD) and the population growth 

rate in novel environments (Svenning et al., 2014). White we know much about 

dispersal kernels of forest trees (Greene et al. , 2004; Nathan et al., 2012), much Jess 

is known about population dynamics at range margins. Rapid changes in climate can 

significantly impact tree development, survival, and phenology (Aitken et al., 2008; 

Walck etal., 2011 ; Vitasse etal., 2013 ; Erickson et al., 2015). Forest dynamics 

depend greatly on the regeneration stage, which is strongly influenced by the abiotic 

and biotic conditions occurring within the understory (De Frenne et al., 20 13). It is a 

key li fe stage that involves severa! important and environmentally sensitive phases: 
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flowering, potlination, seed maturation, propagule dispersal, seed germination, 

seedling establishment, and subsequent survival (Sexton et al., 2009; Fisichelli et al., 

2013; Kroiss and HilleRisLambers 2015; Tingstad et al., 2015; Solarik et al., 2016). 

Species response to climate change will likely be detectable frrst within the transition 

zone ( ecotone) where species ranges overlap (Harper et al. , 2005). Ecotones tend to 

have the highest environmental heterogeneity (Boulangeat et al. , 20 12), are highly 

variable, and under constant contraction and expansion (Gasto n et al., 2003 ; Sexton et 

al., 2009; Eppinga et al., 2013). A species range limit is typically caused by a 

combination ofsome limitation in the species phys iology to deal with environmental 

changes (i.e. northern ranges are too cold and southern ranges too hot) and its 

interaction with the local bio tic community (Gosdose et al., 201 7) ; where even minor 

changes can cause significant reduction in fitness and impact the species ability to 

acquire resources (i.e., light, water, space; Beckage et al. , 2008; Fisichelli et al., 

20 13). Migrating tree species will likely face negative bio tic interactions at the range 

limit, as they migrate towards novel habitats, where competitors are already 

established (HillRisLambers et al. , 20 13). Resident populations can fwther inhibit 

range shifts of invading species through priority effects (i.e., legacy effects) . Such 

effects will occur when the resident species lowers the availability of resources ( e.g. 

light, space, nutrients) or changes the environrnent ( e.g. soit pH) in a way that gives it 

an advantage over invading species (Shulmann et al., 1983; Urban and De Meester 

2009). Priority effects can be long lasting (Davis et al., 1998), as they can persist long 

after a resident species has become maladapted to the local environment, further 

delaying invading species from colonizing- even if they are better adapted to the 

local conditions (Atkins and Travis 201 0). These effects have been shawn to occur 

within many ecosystems (Case et al., 2005 ; Sexton et al., 2009; Fenton and Bergeron 

2013) and can alter the association between the environment and species distribution 

(Urban and De Meester 2009; Leopold et al. , 20 14). 
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Severa) factors have been proposed as key inhibitors oftree species range expansion: 

seed supply (fecundity) and dispersal are amongst the best studied (e.g. Clark et al., 

2003 ; [verson et al., 2008) and typically seen as the primary cause for migration lags 

(Case et al. , 2005 ; Sexton et al., 2009; Hargreaves et al., 2014). The limited 

availability ofseed within periphery populations is undoubtedly constrained by the 

abundance, proximity, and fecundity of the parent trees in these populations (Aitken 

et al., 2008; Sexton et al. , 2009; Martin and Canham 201 0). However, even when a 

seed source is present and able to disperse propagules at greater distances (~ 1 OOm; 

Clark et al. , 1998) other factors can further impede successful recruitment. 

Unfavourable substrates could severely impact recruitment (Caspersen and Saprunoff 

2005 ; Marx and Walters 2008), especially propagules travelling a greater distance 

from the ir parent (Kroiss and HilleRisLambers, 20 15). The lack of sui table substrates 

for seedlings to frrst germinate and establish upon can have multiplicative effects, 

particularly at the range li mit. A combinat ion of novel edaphic effects could arise, 

where the absence or Jack ofkey symbiotic microbial, fungal communities, and 

nutrients ( e.g., calcium and magnesium) could impact seedling emergence, growth, 

and survival (LaFleur et al., 2010; Urli et al., 2016; Collin 2017) . Further, as 

microclimate within the understorey is largely controlled by the overstorey canopy 

and its composition (i.e. light, temperature, competition, soi! fertility), the conditions 

occurring within the ecotone (i.e. , species range overlap) could cause a mosaic 

unfavourable recruitment sites altering the recruitment niche and demography (Grubb 

1977; Kobe and Coates 1997; Benavides et al. , 2015 ; lbanez et al. , 2015; Reich et al. , 

2015). 

Our understanding of the factors controlling recruitment within the temperate-boreal 

ecotone remains limited, where few empirical studies have assessed the influence of 

non-climatic factors on regeneration dynamics at range margins (Stanton-Geddes et 

al., 2012; HilleRisLambers et al., 2013, Brown and Vellend 2014) . Although we have 
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methods to evaluate recruitment limitations caused by seed dispersal and microsite 

favourability (Clark et al. , 1998), including response to forest management (LePage 

et al., 2000; Caspersen and Sprunoff2005) , rarely are they done at range limits within 

undisturbed canopies (but see Drobyshev et al., 2014 and Benavides et al., 2015). Our 

objective in this study is test the hypothesis that priority effects are limiting 

recruitment oftemperate tree species into the boreal forest. We do so by investigating 

the relative importance of a series of contributing factors known to influence tree 

seedling recruitment: seed ling dispersion, fecundity and substrate favourability. We 

also consider the influence of local biotic neighborhood, as a pro x y of the potential 

effect of resident trees on unmeasured environmental variables. We predict that (i) 

boreal trees will influence the spatial distribution of substrates within a stand, with 

which these substrates will (ii) influence the seedling density oftemperate tree 

species, and (iii) limited seedling dispersal will magnify priority effects from boreal 

tree species. 

3.3 Methods 

3.3 . 1 Study Sites 

The study was conducted at three permanent sample sites established as part of the 

QUTCCFOR network (QUantifying and mapping the Impact ofClimate Change on 

FORest productivity of Eastern North America); (i) Abitibi-Temiscaminque 

(hereafter referred to as Abitibi) (48° 9'45 . 14"N, 79°24'4.39"W), (ii) Le Bic 

(48°20'1 .03"N, 68°49'3.79"W), and (iii) Sutton (45° 6'46 .09"N, 72°32'28.67"W). Ali 

three sites are located with in or at the li mit of the nort hern temperate forest zone; 

where Abitibi is located within the balsam fir-ye llow birch (Abies balsamea - Betula 

papyfrifera) domain, Le Bic within the balsam frr-yellow bi.rch (Betula. 
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alleghaniensis) domain, while the Sutton site lies within the hardwood forest subzone, 

made up of the sugar maple (Acer saccharum)- basswood (Tilia Americana) domain 

· (Saucier et 2003). Elevation at the three sites ranged from 350 m-400 rn in Abitibi , 

200 rn to 320 rn at Le Bic, and 500 rn to 850 rn at Sutton. The later drives a transition 

from primarily temperate dominated canopy species at the lower elevation (<650 rn) 

to a balsam fir-yellow birch caver at higher elevation. Mean annual temperature 

ranges among sites from -15.4C in January to 19.7C in July, while annual 

precipitation ranged from 868-1314 mm (Environment Canada, 20 16) 

3.3.2 Field Sampling 

A grid of20 rn x 20 rn quadrats was established at each site to map overstorey canopy 

trees. Each site varied in plot size, where total area ofmapped grids ranged from 200-

320 rn in width and 200-1000 rn in plot length. All trees within the study grid had 

their coordinates mapped using Leica Flexline© TS06 and TCR805 Total Stations. 

Each tree with a diameter at breast height (DBH) ::=:10.0 cm was mapped, identified by 

species, health status (living, dead, declining, fallen) and its DBH ( 1.3m) was 

measured. In the Late spring of 2015, four recruitment plots ( l m2
) were established 

within each of the 20 rn x 20 rn grids at a 5 rn x 5 rn spacing (3424 total recruitment 

plots ac ross ali 3 sites). Recruitment was measured over two years (20 15 and 20 16) 

for two recruitment stages: (i) first year seedlings (referred to as stage 1 ); identified 

by the presences of cotyledons, absence of terminal bud sc ars, suppleness of the stem, 

and number of leaves, (ii) older seedlings (referred to as stage 2); which were not frrst 

year and were <30.0 cm in height. We visually estimated the percent coverage (to the 

nearest 5%, total summing to 1 00%) of the recruitment plots by the following 

substrates: grass, leaf, needles, moss, decayed logs (decay classes: 4-7, Mills and 

Macdonald 2004), solid logs (decay classes: 1-3, Mills and Macdonald 2004), and 
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bole caver from overstorey/sapling trees. ln addition to the substrates, we also 

assessed the caver of deciduous plant caver (non-canopy tree species and herbaceous 

caver) within the recruitment plot. 

3.3.3 Data Analysis 

3.3.3.1 Ordination 

We performed a redundancy analysis (RDA) to investigate the association between 

substrate conditions and canopy composition. Essentially, an RDA is a canonical 

extension of a multiple regression that models multivariate response data, (Y matrix: 

substrate type) in relation to an explanatory variable (X matrix: canopy tree basal 

area) (Borcard et al., 2011 ). Prior to analysis ail response variables were standardized 

usi.ng the Hellinger Transformation, which reduces any extremely skewed values 

(Legendre and Gallagher 2001) . Statistica1 significance was assessed by comparison 

ofthe initial F-statistic to the distribution ofF-values obtained after 1000 

permutations of the response mat rix (Borcard et al. 20 ll) and the goodness-of-fit 

evaluated with the adjusted R2 (Peres-Neto et al., 2006) . Ali RDAs were done using 

the "Vega n" package in R (Oksanen et al. , 20 15). 

3.3.3.2 Seedling Distribution Madel 

Seedling distribution data were analyzed using a modified version of the recruitment 

madel first proposed by Ribbens et al., ( 1994) and further developed by LePage et al., 

(2000), who added substrate favourability, and agai.n by Caspersen and Sprunoff 



(2005) who added light availability. Below, we describe the model and processes 

included, and then the modifications we implemented to construct the final model. 

We then describe our methodology for parameter estimation. 

We considered that the seedling produced by an individual parent tree k, follows a 

power function of the stem diameter of th at tree (DBHk); 

[1]- Fecundity 
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where (R;) is the number of recruits within a specifie recruitment plot i. The total 

number of recruits (SIR- standardized total recruits) is scaled to a parent tree with a 

DBH of30.0cm (Ribbens et al., 1994; LePage et al., 2000; Uriarte et al., 2005; 

Canham et al., 2014). Typically the power exponent is not estimated as it has been 

shown to co-vary with SIR, and we set it to 2 as in previous studies (Caspersen and 

Sprunoff 2005). 

We tested two alternative forms of commonly used isotropie dispersa l kernels 

(Nathan et al., 20 12). The frrst one being the power exponential dispersal kernel, with 

seed density declining monotonically with distance from the parent tree (Ribbens et 

al. , 1994; LePage et al. , 2000): 

[2a] - Dispersal ( exponential function) 
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where dis the distance, Band~ are estimated parameters, and K is a normalizer 

constant that ensures the probability will integrate to 1. Many previous studies have 

fixed ~ ' however, sorne (Canham and Uriarte 2006; Canham et al., 2014) allowed the 

parameter to vary, thus allowing the data to determine the appropriate shape, which 

we do here. The second dispersal kernel we tested was the lognormal, which has been 

shown to be more appropriate for both wind and animal-dispersed seeds (Greene et 

al., 2004): 

[2b] - Dispersal (lognormal) 

( 

d )2 ln(-) 
-1 /2 ~ 1 xb 

g(dk) = -e 
K 

where X 0 is the median distance travelled, Xb determines the breadth or spread of the 

seed dispersal kemel, d is the distance from the center of the recruitment plot to a 

parent tree, and K is again a normalizer constant. 

Ribbens et al. , (1994) combined equations [l] and [2a] to calculate the expected 

number ofrecruits in a quadrat i by the summation ofthe contribution ofall 

conspecific parent trees: 

[3]- Fecundity and Dispersal 

where R; is the expected number of recruits in each recruitment plot i and T is the 

total number of parent trees in the mapped stand. Le Page et al., (2000) frrst 
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introduced substrate favourability into equation [3] by weighting recruitment by the 

favourability of a particular substrate and its percent cover within a recruitment plot: 

[ 4] - Substrate Favourability 

where S is the total number of substrates, ciJ is the percent co ver of substrate j in 

recruitment plot i, andfiJ is a parameter that quantifies the favourability of the given 

substrate.jj is constrained between 0 and 1; a value of 1 indicates that the density of 

seedlings in a given recruitment plot is limited by the size and proximity of parent 

trees and not the favourability of a certain substrate. On the contrary, a value ofO 

indicates an unsuitable substrate and ultirnately lowers seedling density. 

As our focus in this study was to evaluate seedling recruitment in the context of 

species migration, where biotic interaction(s) from surrounding canopy trees may 

become increasingly important and influence micro-site conditions in a way that we 

cannot measure (e.g. ifthe presence ofconiferous trees affect snow accumulation and 

melting), we introduce the local neighborhood effect from hetero-specific canopy 

trees. The effect of local neighborhood is accounted for by: 

[5] - Neighborhood effect 
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where B is the total number of hetero-speciftc canopy tree species within the local 

neighborhood (:S20.0m of recruitment plot center), a, is the total basal area of hetero

specific overstorey canopy trees within the neighborhood, and Pb is a parameter that 

quantifying the importance of the neighborhood canopy - where a higher value of Pb 

indicates an unfavourable neighborhood for recruitment, and thus lowers seedling 

density. 

3.3.3.3 Parameter Estimation 

We performed maximum likelihood estimation (MLE) ofparameters STR , P •. SCAL 

(Xo and B) SHAP (X& and~) JJ. and Pb for each of the most common tree species, 

recruitment stages, sites, and year of assessment. As recommended by Canham et al. 

(20 14 ), we assumed that the expected number of recruits fo llows a zero-intlated 

Poisson distribution, where P: accounts for the larger than expected number of zero 

recruits presented in the recruitment plots. The likelihood of observation Y; given 

parameters theta is therefore : 

[6] 

{
P2 + (1 - P2 )Poisson(Oi8)ifYi = 0, 

Prob (Y; 1 8) = (1- P
2
)Poisson0ii8)ifYi > 0 

A large number ofrecruitment plots with zero seedlings can typically occur (ex. 

Benavides et al., 20 15) and consequently using a zero-inflated parameter avoids 

underestimating the total number of zeros fou nd in the recruitment plots, as weil as 

the over estimation of large count occurrences. We also tried with Pz set to zero to 

ensme ali possible mode! combinations were tested (Table 3. 1). Our analysis was 

performed on the most common boreal; Abies balsamea - ABBA and Betula 



papyrifera - BEPA, and temperate; Acer rubrum- ACRU, Acer saccharum - ACSA, 

Betula alleghaniensis -BEAL, Populus tremuloides POTR, and Fagus grandifolia

F AGR canopy tree species present at each site, which together accounted for 69.9% 

(Abitibi), 84.4% (Le Bic), and 94.5% (Sutton) of the total overstorey canopy basal 

area. (Note: Only ABBA, ACSA, and BEPA were present at ail three sites) 

95 

We estimated seedling density strictly for plots that were at !east 20.0m from the 

boundary of the mapped areas to a void potential edge effects (Bin et al. 20 Il) . We 

performed two separate dispersal analyses to evaluate the influence of long-distance 

dispersal: (i) a clipped analysis, where on! y parent trees within 20m of the recruitment 

plot centre were used, and (ii) a non-clipped ana lysis, where ail parent trees within the 

mapped permanent plot were included for dispersal kemel estimations. Finally, we set 

the substrate favourability of grass, solid logs, rock, and canopy bole caver to 0 as 

they either had minimal coverage (< 1 %) within the recruitment plots overaii or are 

inhibiting recruitment for obvious reason, and thus were not estimated in any of the 

analysis performed. 

Maximum likelihood estimates were obtained with simulated annealing implemented 

in the GenSA package (Xiang et al., 2013) of the statistical platform ofR (R 

Development Core Team 2016). 
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Table 3. 1. Summary of models tested by the inclusion of contributing factors (zero

inflation, fecundity, dispersal, substrate favourability, and neighborhood). The total 

number ofmodels evaluated also includes the clipped and non-clipped versio ns of 

each of the models below, as weil as the lognormal and exponential dispersal kerne ls. 

Mode! Distribution Fecundity Dispersal Substrate Neighborhood 
lD (Pz) (STR) Favourability (f) (Pb) 

A (NUL L) NO YES NO NO NO 
B YES YES NO NO NO 
c YES YES YES NO NO 
D YES YES NO YES NO 
E YES YES YES YES NO 
F YES YES NO NO YES 
G YES YES YES NO YES 
H YES YES NO YES YES 
l YES YES YES r'ES YES 
J NO YES NO NO NO 
K NO YES YES NO NO 
L NO YES NO YES NO 
M NO YES YES YES j'l_O 
N NO YES NO NO YES 
0 NO YES YES NO YES 
p NO YES NO YES YES 
Q NO YES YES YES YES 

3.3.3.4 Final Mode! selection and Corifidence Intervals 

We first ran the nul! mode! [mode! A; Table 3. 1 ), which was then tested against a li 

poss ible mode! combinat ions [models B through Q; Table 3. 1) for a given species, 

recruitment stage, site, clipped, and non-clipped dispersal. The Akaike 's Information 

Criterion (AlC) was computed and models with the lowest AlC were assumed to be 

the best approximat ing. The McFadden adjusted Pseudo R2 (Seghiri et al., 20 12) was 

also calculated aga inst the null mode! to ensure the best final mode! selection. 

Confidence intervals were computed for each parameter by outputting the set of ali 
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estimates used in the annealing process, where on average it resulted in at )east 

l 00,000 set of parameters for each mo del. We then excluded the sets of values which 

the log-likelihood exceeded the critical value of the X2 distribution (a = 0.05 df = 1), 

where the minimum and maximum parameter values from the remaining sets (i .e. , 

95% confidence limits ; see Caspersen and Sprunoff2005). Below we report the best 

models fit for each species, recruitment stage, and site combination regardless if it 

was a clipped or non-clipped mode! for both the 2015 and 2016 seedling density data. 

3.4 Results 

3.4.1 Substrate Distribution 

Our RDA analysis supported our frrst prediction as we found an association between 

the distribution of boreal canopy trees and the distribution of certain substrates at ali 

our sites (Figures 3.1-3.3). The RDAs were ali significant (p ~0.001) , although they 

only explained between 3.2% (Le Bic) and 14.6% (Sutton) of the total variation in 

substrate distribution. First, we found a positive association between temperate 

canopy trees (ACRU, ACSA, and F AGR) and leaf coverage, and another between 

boreal trees (ABBA and BEPA) with needle and decayed wood coverage (Figures 1-

3) . These relationships were particularly apparent at the Sutton site, where an 

elevational gradient caused a more distinct separation in substrate cover and 

overstorey canopy composition (Figure 3.3). 
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Figure 3.1. Redundancy Analysis (RDA) presenting symmetric scores (scaling =3) 

for overstorey canopy basal area and substrate coverage Abitibi (Adjusted R2 
= 0.049, 

F= 4 .27, p-value = 0.001) . Circles indicate recruitment plots, where the angles 

between the substrate variable and the explanatory variables reflect their correlations. 
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between the substrate variable and the exp lanatory variables reflect their correlations. 
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3.4.2 Madel Fit 

Mode! fit differed across tree species, recruitment stages, site, and year, where the 

McFadden pseudo R2 ranged from 0.0319 to O. 7331 (Table 3.2). Overall, mode! fit 

was slightly higher at Le Bic (0.3225) than the Abitibi (0.2645) and Sutton (0.2498) 

sites. Little change occurred in mode! fits between 2015 and 2016 at Abitibi (2015: 

0.2521 and 2016: 0.2844) and Le Bic (2015: 0.3359 and 2016: 0.3091), however, 

models were nearly a third the accuracyin 2016 (0.1208) than in 2015 (0.3788) at 

Sutton. These differences were found to be especially apparent when considering 

recruitment stage, where mode1 fit was better for the 2015 assessment year (stage 1: 

0.4511 and stage 2: 0.3209) than tho se which occurred in the 2016 assessment (stage 

1: 0.1557 and stage 2: 0.0930) overall - outlined by much higher presence of 

seed1ings (Table AC l ). Species specifie recruitment mo dels performed best overall 

for ACSA (R2 = 0.3521) and worst for ABBA (R2 =0.21ll) amongst the tree species 

which were present across ali three sites. For species present within only one or two 

sites, POTR at Le Bic (R 2 =0 .41 1 5) had the best fit overall ac ross recru itment stage 

and years, white BEPA at Abitibi had the poorest (R2 =0.0988) (Table 3.2). 
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Table 3.2. Maxi mum like lihood estimates ofthe most parsimo nious recru itment 

models by species, recru itment stage (Stage 1: 1 st year seedlings, Stage 2: Older 

seedl ings), year, and site. Madel lD includes specifie dispersal keme l in subscript; 

lognorrnal (L), exponentia l (E), and lognorrnal-clipped (Le), exponential-c lipped (Ec). 

NC: model did not converge, NS: non-significant. 

Abitibi 
Stage 1 2 

Year 20 15 2016 20 15 2016 

Mode! ID ltc Kt Etc Ge 

McFadden R2 0.2660 0.3 136 0.3362 0.2038 

AIC 395.83 24.43 861.5 7 523 .22 
< Zero-Inflated 0.7285 0.8016 0.6438 0.6581 co 
~ STR 4600.1 1.7 2535 .3 6 14.0 

.l'viDD 9.72 13.7 10.5 23 .8 

SHAP/SCAL 9. 710.08 13.4/0.00 10.510.06 20.0/ 1.41 
Neighborhood 0.4644 NS NS 0.3433 

Mode! Ct D B 

McFadden R2 0.2723 0.21 17 0.2648 

AIC 4 19.14 728.4 1 656.77 
::J Zero-Inflated 0.7351 0.5273 0.6619 ç::: 
u STR 435.3 c 12.0 2 .8 < 

.l'viDD 22.7 NS NS 
SHAP/SCAL 20.0/0 .50 NS NS 

Neighborhood NS NS NS 

Mode! Ct Ctc Et Ct 
::v!cFaddenR~ 0.348 1 0.2959 0.3849 0 .2959 

AIC 290.18 44 .11 961.36 704.46 
< Zero-Inflated 0.7600 0.8742 0.4268 0.4241 {/.) 

u STR 190.6 33 .7 2288 .7 3 18.57 < 
.l'viDD 18.3 14.1 22.5 21.6 

SHAP/SCAL 16.210.49 14.1 0.01 20.0/0.48 20.0/0.40 
Neighborhood NS NS NS NS 

Mode! Ctc B 

McFadden R 2 0.0865 0.11 12 

AIC 3 1.85 121.0 5 
< Zero-Inflated 0 .5480 0.9106 0... 

'"" STR 1.2 c 0.7 j c co 
.l'viDD 8.8 NS 

SHAP/SCAL 8.710.04 NS 
Neighborhood NS NS 
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Table 3.2 (continued) 

Le Bic 
Stage 1 2 
Year 2015 2016 2015 2016 

Mode! ID Clc B Elc El 
McFaddenR2 0.2971 0.0511 0.2859 0.1521 

AIC 172.01 245 .97 364.95 424.29 
< Zero-Inflated 0 .8868 0.7309 0.6695 0.5463 ca 
~ STR 64.5 0.6 1666.5 1014.8 

MDD 18.2 NS 12.9 15.9 
SHAP/SCAL 18.1/0 .00 NS 12.9/0.01 14.9/0.37 

Neighborhood NS NS NS NS 
Mode! H EE D cl 

McFadden R2 0.3747 0.3706 0.4274 0.3047 
AIC 563.97 4446.16 273.44 25 5.76 

:J Zero-Inflated 0.7344 0.3787 0.8202 0.8570 ~ 
u STR 83 .7 223 18.5 46.2 259.8 < 

MDD NS 17.0 NS 8.2 
SHAP/SCAL NS 15.211.51 NS 7.6/0.39 

Neighborhood 0 .2053 NS NS NS 
Mode! D El D D 

McFaddenR2 0 .53 17 0.3759 0.1396 0.2268 
AIC 271.50 998.21 234.61 236.2 1 

< Zero-Inflated 0.8965 0.52 10 0.7257 0.8393 en 
u STR 24.4 7592.3 17.0 13.8 < 

MDD NS 32.2 NS NS 
SHAP/SCAL NS 19.9/0.98 NS NS 

]'ieighborhood NS NS JtS NS 
Mode! cl q Kl 

McFadden R2 0.3513 0.2745 0.4080 
AIC 11 2.08 96.80 27.25 

< Zero-Inflated 0.9411 O. 7731 _NS 
~ 
ca STR NC 521.9 1911.4 14.8 

MDD 19.7 15.0 43 .1 
SHAP/SCAL 19.7/0.02 15.0/0.05 0.0 114.09 

Neighborhood NS 1.0504 NS 
Mode! Klc Clc Klc 

McFaddenR2 0.5260 0.1668 0 .5417 
AIC 17.49 108.37 8.00 

~ Zero-Inflated NS 0.8533 NS b STR 3.03 c 72.9 0.2 CL 

MDD 7.0 10.8 6.9 
SHAP/SCAL 7.0/0.0 10.5/0.26 6.910.0 

Neig_hborhood NS NS NS 



104 

Table 3.2 (continued) 

Sutton 
Stage 1 2 
Year 20 15 20 16 20 15 2016 

Mode! ID CL KL 
McFadden R2 0.1188 0.0871 

AIC 46.72 31.83 
< Zero-Inflated 0.8896 NS co 
~ S1R l c r·c 586.9 37.5 

MDD 12.5 20.0 
SHAPISCAL 11.6/0.40 20/0.04 
Nei~hborhood NS NS 

Mode! H EL EL EL 
McFaddenR2 0.437 1 0.3906 0.4744 0.2758 

AIC 1044.17 375.03 532.21 375.03 
< Zero-Inflated 0.5768 0.7914 0.7779 0.5858 Ul 
'-.) S1R 298.1 1104.2 1847.2 779.1 < 

MDD NS 104.9 20.1 18.9 
SHAPtSCAL NS 19.9/ 1.82 19.9/0.10 14.0/0.78 

Nei!iliborhood 0.5373 NS NS NS 

Mode! B A KLc A 

McFadden R2 0.7331 0.0000 0.5417 0.0000 

AIC 20.74 34.68 8.00 258.41 
< Zero-Inflated 0.9961 0.6843 NS NS Cl.. 
~ S1R 6.0 0.0 2.3 0.0 co 

MDD NS NS 19.1 NS 

SHAP/SCAL NS NS 19.110.0 NS 

Neiahborhood 1'/S NS NS NS 

Mode! Z·F Z·F Z·N z 
McFadden R: 0.4203 0.0942 0.1554 0.0319 

AIC 142.65 247.94 89.68 99.02 
' Zero-lnflated 0.9286 0.7239 0.9276 0.8754 < w S1R 42.1 1.1 9.1 0.4 co 

MDD NS NS NS NS 
SHAP/SCAL NS NS NS NS 

Neighborhood NS NS 1.1479 1'/S 
Mode! CL CLc D EL 

McFadden R2 0.2140 0.1381 0.3146 0.0700 
AIC 380.12 115.55 42902 364.68 

~ Zero-Inflated 0.6812 0.7776 0.74 17 0.4180 0 

~ S1R 107.7 28.6 40.0 177. 1 
MDD 7.7 6.7 NS 36.3 

SHAPISCAL 6.9/0.46 6.7 0.13 NS 14.8/ 1.34 
Neighborhood NS NS NS NS 
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3.4.3 Substrate Favourability 

We found that the favourability of certain substrates directly influence the distribution 

of seedling densities, and th us supported our second prediction. Overall, 21 of the 

fmal 56 recruitment models included substrate favourability (Table 3.2), where the 

relative influence differed amongst sites, recruitment stages, species, and years (Table 

3.3). However, we found only a few consistent results concerning the favourability of 

substrates. First, temperate tree seedling densities were significantly and negatively 

impacted by the presence of boreal associated substrates: needle cover (ACRU:f= 

0.1077, ACSA:f= 0.013 , BEAL:f= 0.0378, and FAGR:f= 0.0431) and decayed 

wood (AC RU:f= 0.1454, ACSA:f= 0.1302, and FAGR:f= <0.001). Interestingly, 

ABBA, was favoured by these two conspecific substrates (needle/=0.31 04 and 

decayed wood.f-=0.6573) , at !east at the Abitibi site. Second, we found that temperate 

canopy associated substrate: leaf caver, to be extremely unfavourable for boreal 

species if= 0.1838) and certain temperate species (A CRU: f = 0.2120 and ACSA: f = 

0.1673), but not others (BEAL:f = 0.4861 and FAGR:f= 0.3583) (Table 3.3). 

Finally, regardless ofspecies, we found that the single best predictor oftree seedling 

densit ies was the presence of deciduous plant caver witbin the recruitment plots 

(global average across species,f= 0.5890). Deciduous plant caver overall was much 

more favourable across species at bath Abitibi (site avg.f= 0.8849) and Le Bic (site 

avg.f= 0.7808), but was unfavourable at Sutton (site avg./ =0.2253). Deciduous 

plant caver was also found to be more favourable across ali species for stage 2 

recruitment than stage 1, particularly at Le Bic (l:f= 0.6964 and 2:f= 0.8483) and 

Sutton (l:f= 0.0812 and 2:f = 0.3694) (Table 3.3). 
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Substrate favourability was consistent across years for most species and recruitment 

stages. However, certain exceptions did exist. For example, deciduous plant cover 

was unfavourable for both recruitment stages of ACSA at Le Bic in 2015 if <0.2500), 

but then bec ame favourable in 2016 if= O. 9999). The opposite can also occur, with 

deciduous plant cover favourable in (2015 :/= 0.981) for stage 2 ACSA but not in 

2016 if<O.Oûl) (Table 3.3). 

3.4.4 Seedling dispersal 

Dispersal was found to be a key driver oftree seedling recruitment as it was included 

within 31 of the final 56 models (Table 3.2). We found that mean distance dispersal 

(MDD) for the most parsimonious models, regardless of the clipped or non-clipped 

dispersal analyses, was within 20m when averaged across ali factor combinations 

(Figure 3.4, Table 3 .2) . Overall, ACSA had the longest MDD by species on average 

(31 .6m) , POTR the shortest (8.2 rn) , while ail other species generally were around 

15 .0m (Table 2) . We found that the lognormal dispersal kernel provided a much 

better ftt (29 out of31) than the exponential kernel (Table 3.2). The non-clipped 

analysis was favoured in 20 of the final 31 mo dels, particularly by Acer species ( 10 

non-clipped versus 1 clipped). Seedling dispersal of ABBA ( 4:5), BEPA (2:3), and 

F AGR ( 1 :2) showed no preference for clipped or non-clipped dispersal (MDD was 

well within 20m for these species) . POTR favoured the more localized recruiting 

clipped analysis (0:3) (Table 3.2) . 
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parent trees for each of the seven tree species analyzed by site and year for ftrst year 

seedlings. 
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3.4.5 Neighborhood 

We found very little support for the influence ofhetero-specific neighborhood (<20.0 

rn ofrecruitment plot centre). The effect ofneighborhood was significant in only 6 of 

the 56 total models (Table 3.2), where the influence ofneighborhood composition (as 

indicated by high Pb estimate) on recruitment was weak (Pb< 1.11 , Tables 3.2 and 

A Cl). We found no clear relationship with site, species, nor recruitment class or year 

of assessment. 

3.5 Discussion 

Our study linked fecundity, seedling dispersal, substrate favourability, and local 

neighborhood as a means of explaining the recruitment of seven tree species at the 

temperate-boreal ecotone ofnortheastern North America. We provide novel evidence 

that priority effects are inhibiting the recruitment oftemperate tree species into the 

boreal forest. Our findings suggest that the relative strength of the priority effects 

imposed on temperature tree species is however dependent on the site, species, 

recruitment stage, and year. The variability amongst our models reveals the difficulty 

ofmodeUing seedling recruitment (Caspersen and Sprunoff2005; Bin et al. , 2011 ; 

Be na vides et al. , 20 15). Nonetheless, our extensive dataset and mo dels allowed us to 

outperform ( - 28.0% of total variation explained) those who ran similar recruitment 

studies (Binet al. , 2011). 
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3.5.1 Substrate Favourability 

We found an association between the distribution of certain microsites and canopy 

tree composition. Substrate and its subsequent favourability were associated with a 

higher frequency of needle and decayed wood under boreal tree canopies, particularly 

in the presence of ABBA and BEPA (Figures 3. 1-3.3). Our results conftrm our 

hypothesis that priority effects from boreal species create substrates that ultimately 

impede the recruitment of tempera te tree spec ies. The frrst boreal type of substrate, 

needle co ver, was particularly efficient at inhibiting recruitment of tempera te tree 

species, in particular for maples (f = 0.1150). Typically, boreal forest substrates are 

characterized as being thick, acidic, and drier when compared within other forest 

floors (Collin 2017). Further, they can also have lower availability ofnutrients (i .e. , 

Ca, N, and Mg; Zak et al., 1999; Collin 2017) . ACSA has been shown to be 

particularly sensitive to nutrient availability, leading to declines in health and growth 

at the seedling stages (St.Clair et al., 2008; Collin et al. , 20 17). Albeit that needle 

cover causes significant changes to the recruitment environment for temperate tree 

seedlings, it was fou nd to be more favourable (f = 0.4064) for fu·st year seed1ings of 

ABBA. Improved boreal recruitment on heavy needle cover highlights a preference 

for conspecific replacement (Rooney et al., 2000), and could further impede 

temperate tree species migration by limiting microsite availability. 

Unlike previous studies (ex. LePage et al., 2000; Caspersen and Sprunoff2005), we 

found that decayed wood was generally an unfavourable substrate for al! temperate 

species, with the exception of one instance (ACSAstage2, Sutton- 20 16). We were 

surprised by this fmding as decayed wood has long been cited as an extremely 

favourable , safe site for seedling recruitment within both temperate and boreal sites 

(Harmon et al. , 1986; Marx and Walters 2008). Interestingly, decayed wood was a 
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favourable substrate for the smaller seeded tree species (ABBA and BEAL) within 

our study, which is consistent with other studies (ex. Caspersen and Sprunoff2005 ; 

Marx and Walters 2008; Lambert etal., 2016) (Table 3.3). Decayed wood can 

provide a beneficia! substrate for these species as it is easier for their smaller radical 

to penetrate the softer medium. Decayed wood has also been shown to contain 

beneficiai fungi (Fukasawa 20 12), improved moisture and nutrient content, and even 

improve substrate temperature resulting in improved growth (Tedersoo et al., 2008). 

Despite this affmity for decayed wood by ABBA and BEAL (Simard et al., 2003), we 

highlight the difficulty in making global favourability conclusions as we found 

variation across years. For example, decayed wood was found to be a strong inhibitor 

if= 0.1091) for ACSAstagcl at Sutton in 2015, however, it became a highly favourable 

substrate if= 0.9979) the following year, which was opposite ofwhat we found for 

BEAL (Table 3.3). The low favourability of decayed wood for maples (ACRU and 

ACSA) may be due to a few reasons: (i) white decayed wood may be a preferred 

substrate for germination, it could become Jess favourable for subsequent growth and 

survival due to potentially poorer nutrient availability over tirne for large seeded 

species, (ii) the species of decayed wood is unfavourable ; Marx and Walters (2008) 

showed that seedling growth and density can be directly influenced by the species of 

decayed wood it establishes upon, where nitrogen concentrations and mineralization 

rates can vary considerably between species of decayed wood. Similarly, Lambert et 

al. , (20 16) showed that although conifer and birch decayed wood was found to be 

highly favourable for BEAL, maple decayed wood was not. 

The best single predictor oftree seedling density across species and sites within the 

temperate-boreal ecotone was the presence of deciduous plant co ver within our 

recruitment plots (Table 3.3). Ali species (exception ofBEAL) were found to be 

positively associated to the presence of deciduous vegetation. These finding have 

be en reported in other recruitment studies (Ibanez et al., 2015 ; Benavides et al., 
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20 15), where the vegetative co ver have been shawn to improve tree seedling 

emergence and survival by offering shade and reducing transpiration demands 

(Muhamed et al. , 20 13; Walters et al., 20 16). Further, it has a Iso been suggested as 

providing protection from earl y spring frosting events (Morin and Chuine 2014 ), and 

refuge !Tom herb ivory (Cebriâ.n and Duarte 1994; Solarik et al. , 201 0; Walters et al., 

20 16). These benefits could play an extremely important role, particularly in the 

context of populations at the range margin as seedlings within the ecotone are already 

exposed to higher environrnental variability (Boulangeat et al. , 2012), and these 

added benefits could improve survival within these marginal conditions (Castro et al. , 

2004). On the contrary, an increased presence of deciduous caver cou id also impede 

early seedling recruitment through the direct competition for nutrients, light, and 

water (George and Bazzaz 1999; Davis et al. , 1999), which would ultimately reduce 

growth and survival of seedlings and saplings (Fei and Steiner 2008; Walters et al., 

20 16). We have sorne evidence for this with ACSAsrage l (j = 0.2959), however 

favourability of deciduous caver improved greatly for aider ACSA seedlings (j 

=0.6460) . Although we did not directly measure light, we assume that the increased 

presence of deciduous plant caver within our recruitment plots was due to higher light 

availability caused by gaps in the canopy (Schumann et al. , 2003) . Although 

Caspersen and Sprunoff (2005) failed to fi nd a consistent argument for light 

limitation within their recruitment study, they were able to conclude that seedling 

densities of ABBA and ACSA declined with decreasing light availability. Similarly, 

Gasser et al. , (20 l 0) found declining density of ACSA and BEAL seedlings with 

decreasing light availability. The distribution ofvegetation could indicate the 

variability in light availability, and therefore influence the transition of first year 

seedlings to aider seedlings (Messier et al., 1998; Benavides et al., 20 15; Wa1ters et 

al. , 2016). 
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3.5.2 Seedling Dispersal 

Increased dispersal is generally expected to evolve through natural selection at 

expanding range margins (Hargreaves and Eckert 2014), especially if the ranges are 

dynamic and not static (Sexton et al., 2009) . Although there is evidence of long 

distance dispersal events occurring in the past (Clark et al. , 1998), like others 

(Ribbens et al., 1994; LePage et al., 2000; Caspersen and Sprunoff2005 ; Fiscihelli et 

al. , 2013), we found that seedlings are establishing at distances within close 

proximity oftheir parents (Table 3.2, Figure 3.4). As a result, temperate tree species 

are at risk of significant migration !ag. A shortened dispersal bas been shawn to 

promo te the coexistence of tree species through the reduction of competitive 

exclusion (Hubbell et al. , 1999). However, if a species remains unable to disperse at 

greater distances, it will risk becoming maladapted to future climatic conditions 

(Kawecki and Ebert, 2004; Franks et al. , 20 14). Species unable to disperse at rates 

comparable to the changing climate; suggested to being as muchas 4.9km year" 1 for 

ACSA (Boisvert-Marsh et al. , 2014), are at risk ofbeing exposed to environmental 

conditions that cou1d cause significant drop offs in fitness (Morin and Chuine 2014; 

Solarik et al., 2016) . On the contrary, although increasing dispersal distances 

provides an opportunity for greater range expansion, it also steepens the 

environmental gradient. For species with high MDD, expansion is limited by the 

adaptive plasticity of the species to these novel conditions (Gilbert et al. , 20 17). As 

highlighted here, temperate tree species expanding further into the boreal forest will 

face higher occurrences ofunfavourable substrates, which in tum cao magnify the 

priority effects imposed by resident populations (Mohd et al. , 20 16). 
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3.5.3 Neighborhood 

We found little to no evidence that hetero-specific canopy trees within the local 

environment impact seedling density (Table 3.2) . We suspect that this is due to the 

influence local neighborhood being captured within the favourability ofsubstrates 

and the amount of light rather than the cumulative basal area ofhetero-specific trees. 

However, the minimal influence of hetero-specific trees could suggest that they help 

minimize host specifie enemies (i.e., seed predators, herbivory, pathogens), which 

have been shown to negatively affect conspecific recruitment (Moorcroft et al., 2006; 

Pigot and Leather 2008; lbariez et al., 20 15). Perhaps the variability in canopy 

composition currently occurring in the ecotone offers a "middle of the road" 

compromise between boreal and temperate tree species, where the species better 

adapted to future climate conditions will eventually become dominant within these 

environments. 

3.6 Conclusion 

A combination ofpriority effects caused by a feedback ofcanopy trees on substrate 

distribution, and limited seedling dispersal, together highlight a conundrum for rapid 

migration oftemperate tree species into the boreal forest. First, we found the presence 

ofboreal trees in the canopy intluenced the distribution ofneedle cover and decayed 

wood substrates. Then, together, these substrates inhibited the recruitment of 

temperate tree species, while favouring conspecific replacement. Second, we found 

that seedling dispersal was limited to areas in close proximity of parent trees. These 

results raise concerns about the species ability to maintain itselfunder new climatic 

conditions by tracking their climate optimums since the climate is changing more 
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rapidly than they can move. In a recent modelling study by Vissault (20 16), it was 

concluded that the temperate-boreal ecotone would eventually transition to 

exclusively temperate forest, with however, very little colonization ofboreal forest by 

temperate tree species, even after considerable time (+ 10,000 years) . Together, the 

modelling results and our empirical study would suggest that without major 

disturbances to alternative stable states might occur, at !east for a long period of ti me, 

with the distribution oftemperate and boreal forest frozen intime despite 

considerable climate change (Davis et al. , 1998). The evidence of priority effects 

imposed by boreal trees provides an explanation for the lack ofrapid migration oftree 

species reported by Sittaro et al., (2017) . Ultimately, it should be expected that in the 

absence of forest management or a natural disturbance (i.e., tire or insect outbreak) 

that favour canopy gaps (Leithead et al., 2010, 2012; Willis et al., 2015), the rate of 

colonization/spread oftemperate species into the boreal forest should be expected to 

lag considerably behind the rate of climate change (Aubin et al. , 20 16). Finally, our 

results also highlight the difficulties in general ising the contributing factors that could 

limit tree recruitment within the transition zone since these systems show 

considerable variability amongst sites, recruitment stages, species, and years. Clearly, 

other factors not considered in this study could be involved or the processes involved 

are so strongly non-linear that deterministic chaos might be involved (Beninca et al., 

2015) . 





CONCLUSION 

«Life is a pattern with complexity» 
Alan Watts 

Difficulties arise when trying to estimate the potential impacts climate change might 

have on the biosphere in the future , where considerable variability exists across scale 

and time. Further, the complexity associated with making future predictions based on 

these estimates can often cloud our understanding, analysis, and interpretation of the 

driving factors we believe to be controlling species response(s) . Essentially, we can 

compare our efforts to trying to drive a car by always looking in the rear-view mirror, 

a difficult task needless to say, particularly when we know there is unforeseen turn or 

cliffahead (i.e. , climate change) . One way to mitigate this problem (other than 

turning your head around) is to design research projects that are designed to use 

methods or approaches that incorporate conditions likely to occur in the future. 

This thesis becomes timely in gathering sorne of the necessary information 

surrounding the influence of key abiotic and biotic factors associated with tree 

seedling recruitment in the context of species adaptation and migration under climate 
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change. I th us, made a conscious effort into assessing a range of methods to address 

potential caveats or bottlenecks commonly overlooked, but critical to accurate 

assessment of a species ability to adapt to future environmental. Here, in the 

conclusion 1 summarize some of the new knowledge and key results discovered in 

this thesis, outline sorne limitations to conducting this research, then offer suggestions 

ofpotential alternatives that may be available to help speed up the natural rate oftree 

species migration under climate change. Finally, 1 will conclude with sorne perceived 

opportunities for future research in the context of species response, range dynamics, 

and the influencing factors driving these relationships. 

In the frrst thesis chapter, the primary objectives included: (i) identifying the optimal 

sugar maple species-specific incubation temperature required to break seed dormancy 

and allow germination, (ii) identifying the impact a warmer or cooler temperature 

shift may have on seed germination during the incubation period (a means of 

mimicking potential earlier or later spring conditions in the future) , and (iii) 

forecasting/projecting any potential changes in overall seed germination potential 

across the species range under three future climate warming scenarios projected for 

the end ofthis century. T was able to bring signiftcant light to the potential deleterious 

impacts temperature could have on changing the likelihood ofsuccessful seed 

germination across a species range in a warmer future . White the effect of 

temperature has been done in a number of other studies for sugar maple ( e.g. Webb 

and Dumboff, 1969; Simmonds and Dumboff, 1974; McCarragher et al., 20 Il) to 

help identify the strict species specifie requirements to break dormancy, it has 

typically been done under limited number of temperature and/or provenance 

treatments. Ultimately, by doing so, we minimize our ability to make species wide 

claims, thus I set out to test 287 independent temperature and temperature shifting 

treatments, and found that sugar maple indeed maintains a very narrow species

specific temperature breath ( -1 oc to 7°C) regardless of the seed's origins. 
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Collectively, the species has improved rates of germination when temperatures are 

near or below the freezing point ( -1 oc to + 1 °C), which is the lowest amongst ali 

known forest tree species (Godman and Mattson 1981 ). Cumulative seed germination 

rates however, remained comparable until temperatures rise to , but not beyond 5.0°C. 

Beyond 5.0°C, any warmer temperature (regardless of provenance) causes signiftcant 

declines in seed germination success (Figure 1.6), which was previously believed to 

occur at much higher temperatures ( - 1 0°C; Godman et al. , 1990; McCarragher et al. , 

2011). Sugar maple's local adaptation associated with seed germination to 

temperature also showed a strong latitudinal trend, where northem provenances 

provided overall the best rates of cumulative germination, which collectively declined 

with the latitude of seed origin. On a positive note, although sugar maple 's sou them 

range had the lowest cumulative germination rates , these seeds were able to maintain 

comparable rates o germination under the warm shifting treatments; suggesting these 

seeds have Likely adapted to much warmer and earlier spring conditions within the 

southern species ranges. ln the context of climate warming, conditions at the northern 

ranges are likely to experience faster snow melt and reduced snow cover, which in 

turn could expose seeds and seedlings to higher temperature variability earlier in the 

season and may lead to severe maladaptation to warmer shifts in these populations 

(Priee et al., 2013 ; Mankin and Diffenbaugh, 2015). Collectively, having such 

variability amongst species response to germinale could benefit sugar maple under 

warmer conditions by providing evolutionary rescue (Gonzalez et al., 20 13) from its 

southern ranges. Finally, through the use of historical (190 1-201 0) average 

temperatures for the stratification months (March to May) ; I was able to forecast 

future seed germination under three future climate warming scenarios: +2°C, +5°C, 

and +7°C. By using these three scenarios, projections for significant declines across 

the species range are to be expected, where total !osses of cumulative seed 

germination may be as high as 75% under the warmest scenarios (Table 1.6). 

Although these scenarios just consider temperature, and the drastic impact can be 

alleviated to sorne extent by other factors (i.e., precipitation), the conclusion remains 
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clear: sugar maple possess seed which is locally adapted to temperature, and if 

increases in temperature, and fluctuations in temperature occur in early spring future, 

significant declines in overall recruitment should be expected (Walck et al., 20 Il ; 

Morin and Chuine 2014) . 

[f the local environrnent is however, able to match the species specifie requirements 

to ensure seed germination; often ignored when assessing a species' ability to 

establish (i.e. , greenhouse grown seedlings are typically used) (Putnam and Reich 

2016), the next bottleneck lies within the favourability of the local micro-environment 

(abiotic and biotic), which will help determine if the species is able to establish and 

persist over time (Walck et al. , 2011 ). To do so , l investigated the influence of site 

which allowed for the simultaneous assessment of local climate and microsite by 

establishing a large-scale seed transplant experiment. Using the same seed 

provenances representing the entire sugar maple species range used in the first 

chapter, seeds were transplanted to 12 sites; representing three biomes: the current 

northem sugar maple species limit (temperate forest) , at the species limit (temperate

boreal ecotone), and beyond (boreal forest) the current species limit. More 

specifically, the following predictions were made: (i) that southern seed provenances 

will be the most maladapted to the environmental conditions occurring at and beyond 

the current range limit (resulting in lower recruitment success), as they are the 

furthest in terms ofproximity oftheir origins (provenance effect), (ii) early seedling 

establishment will be best within sites which meet the species specifie climatic 

requirements needed to ensure seed germination (climate effect) , and (iii) upon 

seedling establishment, local microsite conditions more closely resembling those 

within the range limit will favour higher survival rates (microsite effect) . 

Overall, I found that seed originating from the most northem portions of the species 

range provided the best opportunity for successful recruitment at and beyond their 
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current range, which agrees with the first prediction (also coïncides with the results of 

the first chapter) . At !east currently, sugar maple's best option to establishing from 

seed beyond its current range lies within the northem range populations, where the 

highest proportion of seeds gerrninated, established, and survived. The northem seed 

also had the largest seed mass ; providing the best opportunity to establish a seedling 

regardless ofthe transplant site (Hewitt 1998). The increasing recruitment success of 

these seed origins, is likely due to the seed being preconditioned (i.e. locally adapted) 

to sites that are more climatically similar to those sites at and beyond their current 

range limit. Second, 1 found that sugar maple's recruitment was linked to climate, but 

more specifically the timing of specifie temperatures, where the presence of first year 

seedlings was improved in sites which satisfied the species-specific stratification 

requirements to break seed dormancy (Table 2.4). Sites that did not match these 

species specifie conditions bad noticeable reductions in seedling establishment rates 

and these findings were particularly apparent within the temperate and mixedwood 

transplant sites. Shift ratio (stratification days to warm days) parameter; emphasizes 

the importance of meeting an equilibrium between the number of da ys required to 

break dormancy to those that are warming (daily mean of~7 °C) (Figure 2.7). By 

shifting to warmer conditions following seed germination, seedlings are then able to 

establish on warmer soils (ideally moist as weil due to snow melt) , can begin 

photosynthesizing and gaining biomass (Walck et al., 20 Il ; Way and Montgomery 

20 14; Reich et al., 20 15). The influence of micro site pertained to our fmal prediction, 

wbich was tbat sugar maple would recruit better on sites more closely resembling 

tho se found within its species range. The influence of microsite on successful 

recruitment oftree seedlings has long been established (Jones 1945), and reinforced 

more recently (Caspersen and Sprunoff2005 ; Bolton and D ' Amato 2011). 

Ultimately, the relative importance of contributing microsite/substrate factors became 

gradually more important to the recruitment of sugar maple as we shi ft towards away 

from the temperate biome to the boreal - outlined by the number of micro site specifie 

variables included in each ofbiome specifie MRT analysis: temperate: 2x, 
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mixedwood: 4x, boreal: 4x; which was also a highlight of my findings in the third 

chapter (Table 3.3). Together these findings suggest that when a species begins to get 

further in proximity from its origins that the likelihood of encountering more 

unfavourable substrates becomes more frequent and can further impede recruitment 

(i.e. priority effects). However, as I point out in the third chapter, it can be difficult to 

make global conclusions on substrate between years, sites, and species. Although 

there exists variability in favourability for certain factors/conditions for recruitment, 1 

did fmd a number of consistencies within the second chapter. I found that sugar 

maple recruitment was highest when sites had Jess needle cover, higher soi! pH, and 

generally when decomposed wood (coarse woody debris) was present. Overall, first 

year recruitment (includes germination and seedling establishment) was low (7.8%), 

especially considering that seed was ensured to having high variability (+95%) prior 

to transplanting. These much lower recruitment numbers emphasize the much 

stronger influence of the natural microclimate within the understorey (non

temperature variables) can be just as or more intluential in determining the likelihood 

ofseedling surviva l in the first few years (De Frenne et al. , 2013; Fisichelli et al., 

2014) . 

In the final chapter of the thesis, the investigation of the demography within the 

temperate-boreal ecotone was conducted for tree seed ling recruitment for two stages 

(first year and older seedlings) . As evidence for temperate tree migration should be 

detected first within these overlapping ecosystems, I again was interested in 

identifying the relative influence of a series of factors important to seedling 

recruitment; however, unlike what was done in the second chapter (transplanting 

seed), here in the third, [ made inferences into the natural system. [ hypothesized that 

boreal trees species were impeding the successful recruitment oftemperate tree 

species through the imposition ofpriority effects. To evaluate this, I used a seedling 

distribution mode! that incorporated spatially explicit canopy and recruitment data 
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from seven common tree species (Abies balsamea, Betula papyrifera, Betula 

alleghaniensis, Acer saccharum, Acer rubrum, Populus tremuloides, and Fagus 

grandifolia) to better identify the drivers (dispersal, substrate, and local 

neighborhood) of seedling recruitment with within three permanent plots that covered 

a cumulative area of approximately 34.4 Ha. T predicted that (i) boreal tree species 

would influence the spatial distribution of substrates within a stand, with which these 

substrated would then (ii) influence the seedling density oftemperate tree species. 

Finally, I also predicted that seed dispersal would be limited, and thus magnifying 

priority effects imposed from boreal tree species. 

It was found that boreal trees did in fact influence the distribution of substrates; in 

particular the presence of needle caver and decayed wood, which were bath, deemed 

highly unfavourable substrates and affected seedling densities of ali temperate tree 

species. Second, 1 found that seedling dispersal was highly localized, where mean 

dispersal for all trees occurred within very close proximity of parent trees. These 

results suggest that although long distance seed dispersal may be important in the 

context of species range migration (Clark et al., 1998), it remains quite limited within 

the closed canopies which were assessed within this study. Tfwe follow this in the 

context ofkeeping pace with climate change- for example, sugar maple must travel 

4.9 km year-1 (Boisvert-Marsh et al., 2014), using these values essentially means a 

seed should travet 196 km; assuming it takes approximately 40 years for the tree to 

reach reproductive maturity (Godman et al., 1990) to compensate for the annual 

dispersal rate to reach maturity to produce another seed. Needless to say, this remains 

a far cry from the best long dispersal distances (Hewitt and Kellman 2002) . As 

pointed out by a number of studies (Caspersen and Sprunoff2005 ; Marx and Walters 

2008; Kroiss and Hil!RisLambers 20 15), substrates play a key role in influencing the 

success of tree seedling recruitment, however, T found that the relative benefits of one 

global "best" substrate did not exist, and was highly dependent on the species, 
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recruitment stage, and site in question, suggesting that the recruitment niche of 

species is highly dependent on site factors. However, we did fmd that the cover of 

deciduous vegetation cover did provided the best predictor of tree seedling 

recruitment, which could suggest that either competition is providing benefits (i.e., 

reducing water stress) (Montgomery et al. 201 0) or may provide a proxy for better 

understorey light conditions . 

The results from this thesis highlight the fact that the rate of potential migration of 

temperate tree species into the boreal forest is expected to lag significantly behind the 

rate of climate change. The combinat ion of the time required to adapt to future 

conditions (if at ali) , current species specifie thresholds associated with germination 

and substrate favourability, and the monopolization of key resources by boreal tree 

species (i.e. priority effects) ali point to little change in species distributions in the 

latitudinal context that are being reported more frequently (Vissault 2016; Sittaro et 

al., 2017). 

4.1 Research Limitations 

As in any research conducted, a number of potential pitfalls and limitations are 

identified once the research has concluded. Here, T would like to point out a few, 

which 1 believe are important to bighlight. An important limitation which is always 

present when conducting research is Time. A research focus within forest ecology 

sometimes requires long-term studies to make accurate conclusions or projections, 

which is especially difftcult when the subject (tree) is currently experiencing its 

response (climate change). The response time can be especially long (i .e. growth, 

survival, adaptation) . Albeit tbat in forest research one can get around such long 

temporal scales through the use of dendrochronology, however, these methods cannat 
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be applied to the earliest of !ife cycle events and stages. ln this thesis, lam limited to 

the conclusions being made as the number oftime sensitive inputs or factors can 

change annually. First, the seeds used in this research were collected from one year, 

which could have an impact on the quality and viability associated with inter-annual 

variability, which is linked to environmental conditions incurred by the parent trees. 

Second, a common issue associated with time is that academie research being 

conducted in forest ecology, biology, and environmental sciences are constrained to 

the ti me periods of higher education, which typically limited to 2-6 years. Evidently, 

this is a much shorter tirne period than those necessary to witness many of the 

important processes (e.g. seed production, growth, survival). ldeally, following the 

seedlings transplanted beyond their current range (Chapter 2) for a number of decades 

would provide a much clearer picture of the influence, adaptability, and resilience of 

sugar maple to establish long term beyond its species range limit. Third, as is the case 

wben investigating seedling recruitment there exists a potential for rapid pulsation 

(present vs. absent). ln other words, arriving at a site to count the number of 

germinated seedlings one week (one month or one year), could be absent the 

following week, which is a considerable disadvantage particularly when conducting 

latitudinal studies. Scale: is another important limitation, which is often a common 

caveat to interpreting important findings. Although in this research l predominantly 

focus on the individual seed or seedling to make inferences into landscape scale 

processes (migration), being able to incorporate processes occurring at different 

scales ( e.g. nutritional state of individuals to interpret health status) would prove 

beneficiai. The use oftwelve transplant sites in chapter 2 and three sites in cbapter 3 

would have potentially added benefit ifl would have considered three or four times as 

many sites (i .e., including sites beyond the southern species range) , which would 

allow for greater interpretation of the variability associated within the natural system. 

Ultimately, by including different scales one may potential increase the accuracy of 

key processes used in cross-scale modelling approaches (Talluto et al. , 20 15). 

Factors. Although l fee! that l was able to investigate a wide range of contributing 
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factors at early li fe stages, which help contribute to our understanding of determining 

recruitment in the context ofspecies migration (Figure 4.1). 1 did knowingly leave out 

a number, which undoubtedly are known to contribute to seedling demographies. 

These included but are not limited to: precipitation, herbivory, predation (granivory) , 

nutrient content (within seedling and soil) , pathogens (above and below ground), and 

growth, ali ofwhich have been previously determined to impact seedling recruitment 

(Brown and Vellend 2014; Tingstad et al., 2015; Foster et al., 2016; Benavides et al. , 

2016; Walters et al. , 2016) (Figure 4.1). 



127 

PRIORITY EFFECTS 

, ...... 

Sndllna 

........ 

Figure 4.1. A conceptual framework for key li fe his tory cycle stages of a tree (parent 

tree-seed-seedling-sapling), which includes potential inhibiting factors to successfully 

reaching the next life stage. Additionally, the "inner" cogs infer the influence of 

overarching factors (natural disturbances, genetics, and local environment) that will 

simultaneously influence demographies. "Outer" arrows of adaptation and priority 

effects highlight supplemental factors influencing species migration. *Factors 

considered directly/ indirectly within this thesis 

4.2 Speeding up Migration 

The results put forth in this thesis show strong evidence that sugar maple is currently 

constrained by its local adaptation to its environment, where its early !ife stages 

inhibiting rapid migration and is likely to continue in the future. In addition to the 

constraining effect local adaptation can have on slowing the migration of a potential 
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invading species, it becomes even more constrained when resident species are 

imposing effects that further inhibit migration. As these two overarching factors 

(Figure 4 .1) exist, human intervention may provide an opportunity to alleviate these 

potential stressors to sorne extent and speed up the natural process. Assisted 

migration - may provide an opportunity to improving tree species productivity and 

health by artiftcially moving (planting or seeding) a species to a more climatica lly 

friendly future location, which would by-pass a key constraint, dispersal; insufficient 

at overcoming a geographie barriers and insufficient distances obtained (Greene et 

al., 2004; McLachlan et al., 2007). The ethics of this management practice have been 

put into question in the past (Aubin et al., 201 1 ) , however, it is a promising 

alternative as it is becoming increasingly evident that sorne tree species and certain 

populations are currently or will be in the future poorly adapted to conditions at their 

current locations (Hannah 2008). This a lternative does not come without caveats, 

where placing species beyond certain physiological thresholds associated with the 

environment that would lead to signiftcant declines in species health or adaptation 

that would make it a poor strategie option (O 'Neil et al. , 2008). lt thus will require 

careful consideration for picking an ideal target migration distance, which would 

ensure successful long term health prior to implementing an ass isted migrat ion 

practice (Williams and Dumroese 20 13). Forest management strategies- favoring 

the recruitment of temperate tree species. Essentially, the re moval of competing 

boreal trees, would reduce the amount of space inhabited (i.e. crowding) and 

minimize the delay of migration through the promotion of forest gaps; improving 

understorey canopy conditions (i .e., more light, and space) and favour recruitment of 

earl y successional species (Leithead et al., 201 0; Trever and Nowak 20 Il ; Willis et 

al., 2015; Walters et al., 20 16). Further, through the use of forest management, active 

and passive soi! disturbance (i.e. scarification) could also improve the typically, 

cooler, poorer seed bed quality found within boreal stands (Moore et a l. 1999), which 

would improve exposure of mineral soi! that is often associated as a favourab le 

substrate for recruitment (So larik et al. , 201 0; Lambert et al., 20 16). Natural 
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disturbances- may also provide a much needed boast for improving the ability of 

temperate tree species to migrate. lt is expected that the intensity and frequency of 

disturbances to occur within the boreal forests of Canada, particularly for frre and 

insect outbreaks (dominant disturbance regimes in boreal forests of Canada), are 

expected to rise over the next century under climate change (Flannigan et al., 2005; 

Priee et al., 20 13). The northeastern boreal forests of Canada have a\ready seen 

severa! large disturbance events over the past few decades causing considerable 

damage to the existing canopies (i.e. major ice storm, spruce budworm outbreaks, and 

frre). As with forest management practices discussed above, the removal of boreal 

canopy tree species will improve understorey conditions for facilitating the 

recruitment of temperate tree species. Ag ain in the na tura! setting, the effect of a 

natural disturbance will be dependent on the type, size, severity, and historical regime 

of the disturbance and region in question, and thus will influence the species that will 

able to benefit (Fisichelli et al. 2013). 

4.3 Future Research 

Future research interested in looking at species response and fitness in regards to 

range shifts under climate change, will undoubtedly continue to face a difficult and 

daunting task, as the environrnent will be under constant flux. In arder to better 

understand the driving factors controlling a tree species ability to adapt and adjust to 

future climatic conditions will require a number of considerable advances in a number 

of key research streams. Here 1 will outline sorne avenues, which I believe can greatly 

enhance our understanding of the driving factors influencing species range dynamics, 

tree !ife history stages, and their responses to climate change. 
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First, a more direct focus shou ld be taken on identifying individual species specifie 

thresholds associated growth, phenology, and fitness are critical (Figure 4.1 ). 

Detecting such tipping points associated with species specifie physiological 

constraint(s) ( e.g. optimum temperature for photosynthesis) to climate and the ir 

environment are critical in providing baselines for comparative assessments. Doing so 

will allow for a deeper understanding of how species performance and adaptive 

plasticity may play out in the future (Franks et al., 2014) . Identifying these thresholds 

should begin with those that may be controlling key !ife history stages (i.e. flower 

development , bud, break, seed production, seed viability, seed germination, growth, 

leaf development) as we see even within this thesis - where we investigated response 

of recruitment to a series of con tribu ting factors (Figure 4. 1 ). 

Second, future research in parallel with determining species specifie thresho1ds 

should also test species response to potential future climate conditions or 

scenarios. For example, Reich et al. , (20 15) determined that artificially warming soit 

( + 3.4 °C) reduced the competitive abi1ity of species at the ir southern range, white 

species at their northem cooler range limit experienced net photosynthetic and growth 

gains. Research that incorporates such forward thinking by simulating such plausible 

future environmental and climatic conditions will continue to provide invaluable 

information that could be used to better manage and maintain our forests in the future . 

Third, future research should focus on increasing variability within studies. By 

including multiple sites, wh ich representa spectrum of environments a species is 

currently found or wi ll be in the future provides opportunities to assess species 

variability to certain site specifie variables (i.e. , climate, edaphic factors). ln the 

context of a species ability to withstand or respond to future environmental conditions 

will also require assessments that includee multiple life stages within their analysis 

(i.e. seedlings, saplings, and canopy trees) - as their response to changes will be 
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depending on the stage in question (Fisichelli et al. , 20 14; Putnam and Reich 2016). 

Essentially casting a wide net to identify a large amount of environmental variability 

associated with range lirnits, where it is crucial to include peripheral populations

provides considerable insight into the vulnerability or potential adaptability of a 

species. Currently, identifying the factors and their relative contribution as a 

constraint or facilitator still remain poorly understood (Clark et al. , 20 14). As an 

increase in environmental variability is expected to occur with climate change (IPCC, 

2014), a larger emphasis must be made within field assessments, particularly focused 

on measuring adaptive plasticity of a species in novel environment (i.e. more 

transplant studies) (Nicotra et al. 201 0). These have been found to be extremely 

important for species fitness. For example, Morin and Chuine (2014) found that due 

to the variability associated with early spring development associated with leaf 

phenology could limit species migrations as there is an increased risk to frosting 

events at the northern range, wh ile at the southern range li mit the Jack of stratification 

days limits recruitment ofsugar maple. Essentially, different ecotones can create 

different factors that cause range limits, where only once these systems are better 

understood, a more profound explanation may be concluded or not. 

Fourth, future research could focus on a better understanding the variability 

associated with species range genetics. If gene flow is high enough and there is a 

strong enough selection for certain favourably genotypes and phenotypes, it may 

pro vide the necessary adaptive evolutionary rescue (Gonzales et al. 20 13) to promo te 

fitness in novel environments (Franks et al., 20 14; Aitken and Bemmels 20 16; 

Anderson 20 16). If a species is incapable of migrating at rates fast enough to maintain 

its climatic niche, the species will then need to persist in place, where the focus shifts 

from being able to move to being more resilient. One way this may be achieved is 

through epigenetics ; changes in phenotypes caused modifications in gene expression, 

without the alteration ofDNA itself(Berger et al. , 2009). The study ofepigenetics in 
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trees still remains relatively new, where tests across species and environments 

remains untested (Aubin et al. , 2016), however, having the ability to change rapidly 

could pro vide trees the best means of adaptation to deal with potentially hostile future 

local environments . 

Finally, future research in the context of species migration requires a better 

understanding of the influence of edaphicfactors (i.e. structure, porosity, moisture, 

biotic agents) on tree recruitment where there remains relatively few studies (Brown 

and Vellend 2014). For example, white boreal soils are known to be quite often 

nutrient poor (Collin 20 17) and provide unfavourable microsites for temperate species 

(Chapter 3) , we know little if this is due to the constraint associated with certain 

abiotic factors (soi! pH, soi! nutrient content) or if it is due to certain bio tic agents 

being present/absent in the soi! (e.g. pathogens, mycorrhizal fungi) (Kivlin et al. , 

20 13). Furthermore, an increased understanding of the relative contribution of factors 

already identified as causes for migration lags for tree species migration must 

continue, where dispersal (Clark et al. , 1998), fecundity, biotic interactions (Brown 

and Vellend 2014), microclimate (De Frenne et al., 2013), growth (Foster et al., 

20 16) are included (Figure 4. 1 ). 

It is unlikely that sugar maple will tap out to climate change, but it is defmitely up 

against the ropes in its battle against climate change. 
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Table A 1.1. Pairwise comparisons for constant incubation temperature effect on seed 

originating from Tennessee, USA. Significant differences in bold (Fieming

Harrington, a :S 0.05) . 

· I 'C o·c I'C 3'C 5·c 7'C 9'C wc 

o·c 0.9985 

l'C 0.5508 0.1544 

3'C <0.0001 <0.0001 <0.0001 

s·c <0.0001 <0.0001 <0.0001 <0.0001 

re <0.0001 <0.0001 <0.0001 0.7526 0.0486 

9'C <0.0001 <0.0001 <0.0001 1.0000 0.0004 0.9341 

ll'C <0.0001 <0.0001 <0.0001 0.9089 0.0163 1.0000 0.9885 

13'C <0.0001 <0.0001 <0.0001 0.9926 0.0031 0.9972 0.9999 0.9999 
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Table A 1.2. Paired wise comparisons for constant incubation temperature effect on 

seed originating from Kentucky, USA. Significant differences in bold (Fleming

Harrington, a :S 0.05) . 

- I"C o·c I"C J"C s·c 7'C 9"C II"C 

o·c 0.9998 

I'C 0.9930 1.0000 

3'C 0.9533 0.9990 1.0000 

s·c 0.6876 0.9387 0.9939 0.9996 

7"C <0.0001 <0.0001 <0.0001 <0.0001 0.0014 

9'C <0.0001 <0.0001 <0.0001 <0.0001 0.0004 1.0000 

li 'C <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.9546 0.9906 

13'C <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.9026 0.97 15 1.0000 

Table Al.3 . Paired wise comparisons for constant incubation temperature effect on 

seed originating from Pennsylvania, USA. Significant differences in bold (F leming

Harrington, a :S 0.05) . 

- I"C o·c I"C J"C s·c 7'C 9' C II'C 

o·c 0.9985 

I'C 0.5508 0.15<1<1 

3'C <0.0001 <0.0001 <0.0001 

s·c <0.0001 <0.0001 <0.0001 <0.0001 

re <0.0001 <0.0001 <0.0001 o. 7526 0.0486 

9"C <0.0001 <0.0001 <0.000 1 1.0000 0.0004 0.93-11 

I I'C <0.0001 <0.0001 <0.0001 0 90S9 0.0163 1 0000 0.9885 

13"C <0.0001 <0.0001 <0.0001 0.9926 0.0031 0.9972 0.9999 0.9999 
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Table A 1.4. Paired wise comparisons for constant incubation temperature effect on 

seed originating from Sherbrooke, Canada. Significant differences in bold (Fieming

Harrington test, a :S 0.05). 

-1 ·c o·c 1•(' J"C s·c re 9·c WC 

o·c 0.4063 

1·c 0.0103 0.8989 

J·c 0.1330 <0.0001 <0.0001 

s·c 0.0077 0.8729 1.0000 <0.0001 

re <0.000 1 0.0996 0.8907 <0.0001 0.9082 

9·c <0.0001 0.0121 0.5025 <0.0001 0.5340 0.9996 

11•C <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

13·c <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 1 0000 

Table Al.S. Paired wise comparisons for constant incubation temperature effect on 

seed originating from Montmagny, Canada. Significant differences in bold (Fleming

Harrington test, a :S 0.05). 

-1·e o·e J•e 3"C s-e re 9"e ll"e 

o·e 0.3220 

t ·e <0.0001 0.0961 

3·e 0.5302 0.0004 <0.0001 

s ·e <0.000 1 0.0599 1.0000 <0.0001 

re <0.0001 <0.0001 0.0050 <0.0001 0.0088 

9·e <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.321 7 

ll"C <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0005 0.5242 

13"e <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.2 173 0.9999 
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Table A 1 .6. Paired wise comparisons for constant incubation temperature effect on 

seed originating from Ville-Marie, Canada. Significant differences in bold (Fieming

Harrington test, a :S 0.05). 

-1 "C o·c 1'C 3"C s·c re 9'C ll'C 

o·c 0.0926 

l "C <0.0001 0.0103 

3"C 0.9974 0.0057 <0.0001 

5'C <0.0001 0.1383 0.995 1 <0.0001 

re <0.0001 <0.0001 0.2408 <0.0001 0.0225 

9'C <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0001 

II "'C <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.8347 

13"C <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.9789 0.9999 

Table A1.7. Paired wise comparisons for constant incubation temperature effect on 

seed originating from Rivière du Loup, Canada. Significant differences in bold 

(Fieming-Harrington test, a :S 0.05) . 

-t·c o·c l"C 3"C s·c re 9"C wc 

o·c 0.9156 

I'C <0.0001 <0.0001 

··c <0.0001 <0.0001 <0.0001 

s·c 0.9274 1.0000 <0.0001 <0.0001 

re 0.0051 0.2fi l fi 0.0098 <0.0001 0.2994 

9"C <0.0001 <0.0001 0.9574 <0.0001 <0.0001 0.2560 

11'C <0.0001 <0.0001 0 12-15 <0.0001 <0.0001 <0.0001 0.001') 

l3'C <0.0001 <0.0001 0.0020 <0.0001 <0.0001 <0.0001 <0.0001 0.9365 
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ANNEXB 

Photo: 1m2 regeneration plot cage. 216 cages were installed over 12 transplant sites. 
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